Если всё-таки дан периметр прямоугольника, то: периметр прямоугольника P=2(a+b) площадь прямоугольника S=a*b. Составим систему уравнений 2(a+b)=22 a+b=11 a=11-b a*b=24 a*b=24 (11-b)*b=24
11b-b²=24 -b²+11b-24=0 D=11²-4*(-1)*(-24)=121-96=25 b=(-11-5)/(-2)=8 b=(-11+5)/(-2)=3 Решением задачи можно принять любой корень уравнения, допустим примем b=8 см, тогда сторона а=11-8=3 см. Если за решение принять b=3 см, то а=8 см, то есть значения сторон прямоугольника не изменятся.
Пусть хкм/ч-скорость второго, тогда скорость первого равна х+10км/ч. Когда указывается, что тот или иной объект добрался до пункта назначения за какое-то время раньше или позже, необходимо от меньшей скорости, то есть хкм/ч, отнять большую. Расстояние S=560 км, скорость первого u=х+10км/ч, а скорость второго u=xкм/ч. Таким образом, составляем уравнение: 560/х -560/х+10=1. Решая это дробно-рациональное уравнение, получим квадратное уравнение х2+10х-5600=0, положительным корнем которого является число 2.5.ответ:2.5км/ч-скорость второго автомобиля, а скорость первого 12.5 км/ч.
периметр прямоугольника P=2(a+b)
площадь прямоугольника S=a*b.
Составим систему уравнений
2(a+b)=22 a+b=11 a=11-b
a*b=24 a*b=24 (11-b)*b=24
11b-b²=24
-b²+11b-24=0
D=11²-4*(-1)*(-24)=121-96=25
b=(-11-5)/(-2)=8 b=(-11+5)/(-2)=3
Решением задачи можно принять любой корень уравнения, допустим примем b=8 см, тогда сторона а=11-8=3 см.
Если за решение принять b=3 см, то а=8 см, то есть значения сторон прямоугольника не изменятся.
ответ: стороны прямоугольника 8 см и 3 см.