Трёхзначное число, у которого в разряде сотен — цифра a, в разряде десятков — цифра b, а в разряде единиц — цифра c, равно 100a + 10b + c. (Например, 394 = 3 . 100 + 9 . 10 + 4.) Просматривая по кругу эти девять трёхзначных чисел, видим, что каждая цифра встречается ровно по одному разу в каждом из разрядов — сотен, десятков и единиц. То есть каждая цифра один раз войдёт в эту сумму с коэффициентом 100, один раз — с коэффициентом 10 и один раз — с коэффициентом 1. Значит, искомая сумма не зависит от порядка, в котором записаны цифры, и равна
Давай смотреть на картинку: А→ х +15км/ч С х км/ч ← В (встреча) Пусть встреча произошла через t часов. Это значит, что АC = t(x +15) км, а ВС = t x км Что происходит после встречи? а) 1-й автомобиль проезжает СВ за 3 часа со скоростью х+15 км/ч "Слепим" уравнение: tx /3 = х +15 б) 2-й автомобиль проезжает СА за 5 1/3 часа = 16/3 часа "Слепим" ещё одно уравнение: t(x +15)/16/3 = х, ⇒ 3t(x +15)/16 = х Вот теперь нежно и ласково изучаем наши равенства: tx /3 = х +15 3t(x +15)/16 = х Давай разделим одно уравнение на другое ( чтобы t исчезло...) после всех мучений получаем: 16х/9(х +15) = (15 +х)/х Всё. Можно решать: 16х² = 9(х +15)² 16х² = 9х² +270х +225*9 7х² -270х -225*9 = 0 Решаем по чётному коэффициенту: х = (135+-180)/7 х₁ = 45; х₂ = -45/7(посторонний корень) Но нас спрашивают про время до встречи . Спрашивают про t ! Опять цепляемся за уравнение( которое попроще) tx /3 = х +15 t*45/3 = 45 +15 t * 15 = 60 t = 4(часа) ответ: встреча состоялась через 4 часа после начала движения.
Трёхзначное число, у которого в разряде сотен — цифра a, в разряде десятков — цифра b, а в разряде единиц — цифра c, равно 100a + 10b + c. (Например, 394 = 3 . 100 + 9 . 10 + 4.) Просматривая по кругу эти девять трёхзначных чисел, видим, что каждая цифра встречается ровно по одному разу в каждом из разрядов — сотен, десятков и единиц. То есть каждая цифра один раз войдёт в эту сумму с коэффициентом 100, один раз — с коэффициентом 10 и один раз — с коэффициентом 1. Значит, искомая сумма не зависит от порядка, в котором записаны цифры, и равна
1. (100 + 10 + 1)(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) = 111
2. 111* 45 = 4995.