В решении.
Объяснение:
График функции - парабола со смещённым центром.
Таблица:
х -2 -1 0 1 2 3 4 5 6
у 15 8 3 0 -1 0 3 8 15
График прилагается.
1. Область определения функции. Ничем не ограничена.
D(y) = х∈(-∞; +∞).
2. Область значения функции E(y). Ограничена ординатой вершины параболы у = -1.
E(y) = у∈[-1; +∞).
3. Нули функции ( аргумент точек пересечения параболы с осью Ох).
х = 1; х = 3. Координаты точек (1; 0); (3; 0).
4. Знакопостоянство ( какая часть параболы находится выше оси Ох у>0, какая часть параболы находится ниже оси Ох у<0)
а) у>0 при х∈(-∞; 1)∪(3; +∞);
б) у<0 при х∈(1; 3).
5. Наибольшее (наименьшее) значение функции ( значение ординаты вершины параболы)
.
а) у наиб. не существует.
б) у наим. = -1.
6. Промежутки возрастания (убывания ) функции.
а) функция возрастает на промежутке х∈[2; +∞);
б) функция убывает на промежутке х∈(-∞; 2].
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
Как видим, последняя цифра меняется так: 2, 4, 8, 6.
А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр.
Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты:
1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени)
2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2
3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4
4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.