М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
popoposa
popoposa
13.08.2022 15:54 •  Алгебра

Найдите значение выражения 4х – 5y уу, если ух- Vx+y = 3

👇
Открыть все ответы
Ответ:
sungatulin22
sungatulin22
13.08.2022
|x-1|>|x+2|-3
|x-1|-|x+2|>-3
Раскроем модули.
Приравняем каждое  подмодульное выражение к нулю и найдем точки,в которых подмодульные выражения меняют знак:
x-1=0        x+2=0
x=1            x=-2
Нанесем эти значения Х на числовую прямую:

(-2)(1)

Мы получили три промежутка.Найдем знаки  каждого подмодульного выражения на каждом промежутке:
      
           (-2)(1)
x-1                -                          -                          +
x+2                -                          +                        +

Раскроем модули на каждом промежутке:
1)x<-2
На этом промежутке оба подмодульных выражения отрицательны,поэтому раскрываем модули с противоположным знаком:
-x+1+x+2>-3
3>-3 - неравенство верное при любых Х на промежутке x<-2

2) -2<=x<1
На этом промежутке первое подмодульное выражение отрицательное(его мы раскроем с противоположным знаком),а второе - положительное, и его мы раскроем с тем же знаком:
-x+1-x-2>-3
-2x-1>-3
-2x>1-3
-2x>-2
x<1
С учетом промежутка -2<=x<1 получаем x e [-2;1)

3)x>=1
На этом промежутке оба подмодульных выражения положительные, поэтому раскрываем их без смены знака:
x-1-x-2>-3
-3>-3
Неравенство не имеет решений на этом промежутке
Соединим решения 1 и 2 промежутков и получим такой ответ:
x e(-беск.,1)
4,5(47 оценок)
Ответ:
Пакмен007
Пакмен007
13.08.2022

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ