Набирая номер телефона, абонент забыл последние три цифры и, помня только, что эти цифры разные, набрал их наугад. Найдите вероятность того, что будут набраны нужные цифры.
1) По условию на первом месте стоит число 7 Найдём несколько следующих чисел данной последовательности, чтобы найти закономерность. 2) 7²=49; 4+9=13; 13+1=14 На втором месте стоит число 14 3) 14²=196; 1+9+6=16; 16+1=17 На третьем месте стоит число 17 4) 17²=289; 2+8+9=19; 19+1=20 На четвёртом месте стоит число 20 5) 20²=400; 4+0+0=4; 4+1=5 На пятом месте стоит число 5 6) 5²=25; 2+5=7; 7+1=8 На шестом месте стоит число 8 7) 8²=64; 6+4=10; 10+1=11 На седьмом месте стоит число 11 8) 11²=121; 1+2+1=4; 4+1=5 На восьмом месте стоит число 5 Получается, что теперь члены последовательности будут повторяться: 5; 8; 11; 5; 8; 11... Получается последовательность: 7; 14; 17; 20; 5; 8; 11; 5; 8; 11... Подсчитаем, какое число будет стоять на 2017 месте. Вычтем 4 первых члена, которые не повторяются: 2017 - 4 = 2013 Число 2013 делится без остатка на 3 2013 : 3 = 671 Следовательно, после четырёх первых членов 7; 14; 17; 20 будет 671 раз повторяться тройка чисел 5; 8; 11. Значит, последним будет число 11.
Пусть его скорость была -хкм/ч. первый за 2 часа проехал 16*2=32 км, что бы его догнать нужно 32/(х-16) часов. второй за 1 час проехал 10 км, что бы догнать второго нужно 10/(х-10) часов. разница в гонке между ними известно по условию. состовляем уравнение 32/(х-16)-10/(х-10)=4,5 32х-320-10х+160=4,5(х-10)(х-16) при х≠10 и х≠16 22х-160=4,5(х²-26х+160) 4,5х²-139х+880=0 д=59² х1=(139+59)/9=22 х2=(139-59)/9=8.(8) так как х2< 10 то это не может быть решением, так как он никогда не догнал бы даже второго велосипедиста. получаем ответ при х=22км/ч ответ: 22 км/ч
Найдём несколько следующих чисел данной последовательности, чтобы найти закономерность.
2) 7²=49; 4+9=13; 13+1=14
На втором месте стоит число 14
3) 14²=196; 1+9+6=16; 16+1=17
На третьем месте стоит число 17
4) 17²=289; 2+8+9=19; 19+1=20
На четвёртом месте стоит число 20
5) 20²=400; 4+0+0=4; 4+1=5
На пятом месте стоит число 5
6) 5²=25; 2+5=7; 7+1=8
На шестом месте стоит число 8
7) 8²=64; 6+4=10; 10+1=11
На седьмом месте стоит число 11
8) 11²=121; 1+2+1=4; 4+1=5
На восьмом месте стоит число 5
Получается, что теперь члены последовательности будут повторяться:
5; 8; 11; 5; 8; 11...
Получается последовательность:
7; 14; 17; 20; 5; 8; 11; 5; 8; 11...
Подсчитаем, какое число будет стоять на 2017 месте.
Вычтем 4 первых члена, которые не повторяются:
2017 - 4 = 2013
Число 2013 делится без остатка на 3
2013 : 3 = 671
Следовательно, после четырёх первых членов 7; 14; 17; 20 будет 671 раз повторяться тройка чисел 5; 8; 11. Значит, последним будет число 11.