Записать первые три члена ряда
Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.
Сначала , тогда:
Затем , тогда:
Потом , тогда:
Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:
Обратите внимание на принципиальное отличие от числовой последовательности,
в которой члены не суммируются, а рассматриваются как таковые.
Пример 2
Записать первые три члена ряда
Это пример для самостоятельного решения, ответ в конце урока
Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:
Пример 3
Записать первые три члена ряда
На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:
ответ оставляем в таком виде, полученные члены ряда лучше не упрощать, то есть не выполнять действия: , , . Почему? ответ в виде гораздо проще и удобнее проверять преподавателю.
Иногда встречается обратное задание
Пример 4
Записать сумму в свёрнутом виде с общим членом ряда
Здесь нет какого-то четкого алгоритма решения, закономерность нужно увидеть.
В данном случае:
Для проверки полученный ряд можно «расписать обратно» в развернутом виде.
А вот пример чуть сложнее для самостоятельного решения:
Пример 5
Записать сумму в свёрнутом виде с общим членом ряда
Выполнить проверку, снова записав ряд в развернутом виде
Объяснение:sdg
Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13.
Придя в 10 утра в В, он разворачивается и едет обратно.
В А он возвращается в 14.
Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги.
А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус,
который в 10 вышел из В.
Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги.
А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги.
И ровно в 11 он проедет 3/4 дороги и встретит первый автобус.
И дальше все точно также.
Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.