(-∞ ;-3) => функция выпукла;
(-3; +∞) => функция вогнута;
(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;
(-6; 0) <=> f'(x) < 0 => функция убывает;
(0; +∞) <=> f'(x) > 0 => функция возрастает ;
Объяснение:
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x2+18x
или
f'(x)=3x(x+6)
Находим нули функции. Для этого приравниваем производную к нулю
x(x+6) = 0
Откуда:
x1 = 0
x2 = -6
(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;
(-6; 0) <=> f'(x) < 0 => функция убывает;
(0; +∞) <=> f'(x) > 0 => функция возрастает ;
В окрестности точки x = -6 производная функции меняет знак с (+) на (-). Следовательно, точка x = -6 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.
f''(x) = 6x+18
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
6x+18 = 0
Откуда точки перегиба:
x1 = -3
(-∞ ;-3) => функция выпукла;
(-3; +∞) => функция вогнута;
сначала применим к правой части формулу приведения:
cos 2x = -cos x
cos 2x + cos x = 0
2cos²x - 1 + cos x = 0
Пусть cos x = t, причём |t| ≤ 1
2t² + t - 1 = 0
D = 1 + 8 = 9
t1 = (-1 - 3) / 4 = -1
t2 = (-1 + 3) / 4 = 1/2
cos x = -1 или cos x = 1/2
x = π + 2πn,n∈Z x = ±arccos 1/2 + 2πk,k∈Z
x = ±π/3 + 2πk,k∈Z
Данные решения могут совпадать, что разумеется нам не надо, поскольку тогда придётся писать что-то одно. В данном случае не совпадают, и это хорошо видно по числовой окружности, нанеся на неё точки π/3 и π видно, что решения никогда не наложатся одно на другое.
Поэтому, произведём отбор корней по обоим формулам.
Отберём корни из первого решения. Для этого впихнём данное решение в указанный промежуток и решим двойное неравенство относительно n:
3π/2 ≤ π + 2πn ≤ 5π/2
π/2 ≤ 2πn ≤ 3π/2
Разделим на 2п:
1/4 ≤n≤ 3/4
Видим, что никаких целых n нет на данном интервале. Значит, данное решение мы отбрасываем.
Осталось второе решение.
Также вобьём его в указанный промежуток и решим полученное двойное неравенство относительно k, но разобъём данное объединённое решение ещё на два и провернём с каждым подобную операцию:
3π/2 ≤ π/3 + 2πk ≤ 5π/2
7π/6 ≤ 2πk ≤ 13π/6
Разделим данное неравенство на 2π:
7/12 ≤ k ≤ 13/12
Замечаем, что на данном промежутке единственное целое значение k - это k = 1. Подставив его в общую формулу вместо k, получим тот самый корень, который нам требуется:
k = 1 x = π/3 + 2π = 7π/3 - это нужный отобранный корень
Теперь проверим. есть ли ещё такие корни.
Для этого впихнём в данный промежуток второй вариант решения ±π/3 + 2πk, это -π/3 + 2πk:
3π/2 ≤ -π/3 + 2πk ≤ 5π/2
11π/6 ≤ 2πk ≤ 17π/6
11/12 ≤ k ≤ 17/12
По неравенству видно, что есть опять же только единственное значение k - это 1. Подставив его в эту формулу получим наш второй корень:
k = 1 x = -π/3 + 2π = 5π/3
Таким образом, ответ пишем таким образом:
а)π + 2πn,n∈Z; ±π/3 + 2πk,k∈Z
б)7π/3; 5π/3
Под буквой б - наши отобранные корни на заданном промежутке. Задача выполнена.