вероятность.
2. 10!
3. 26%
4. 1) 5/8 (от 6 до 9)
2) 1/36 (на грани первого — шесть, второго — пять)
3) 35/36 (хотя бы на одной грани не 6)
5. Нету количества троечников, поэтому задача нерешаема.
Объяснение:
1) После того, как нашли количество выбрать три согласных и количество выбрать одну гласную, умножаем первое на второе.
Чтобы найти вероятность составления слова "тест", сначала найдём количество комбинаций 6-и элементов по три и 5-ти элементов по 1. Далее находим вероятность найти определённую комбинацию 6-ти элементов по три и 5-ти по 1. Умножаем числа, что получили.
3) От "больше восьми" вычисляем "больше десяти" и получаем то, что искали.
4) 1) Рисуем квадрат с 36-ю квадратиками-исходами, внутри которых пишем количество очков на кубиках. Находим количество благоприятных исходов.
2) Правило умножения: P(A,B)=P(A)×P(B)=1/6*1/6=1/36
3) Условие будет не выполняться только тогда, когда на обоих кубиках будет 6. Вероятность этого — 1/36. Значит, вероятность выполнения условия — 1-1/36=35/36.
a)(2x + y)(2y + x)=2x²+5xy+2y²
б)(5a+2b(Зa+7b)=15a²+41ab+14b²
в) (5c + 2a)(3c - а)=15c²+ac-2a²
г) (3х - 2y)(2х - 5у)=6x²-19xy+10y²
д) (3n - 1)(5 - 3n)=-9n²+18n-5
e) (-a - b)(3a - 2b)=-3a²-ab+2b²
ж) (-2x + 1)(3x+ 2)=-6x²-x+2
з) (-2n - 3m)(-3n + m)=6n²+7mn-3m²