x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
Дано:
D₁=2 см R₁=1 см
D₂= 3 см R₂=1,5 см
m₂ - ?
Предположим, что шары изготовлены из одного и того же материала (у шаров одинаковая плотность ρ, что в условии задачи, к сожалению, не указано)
Масса тела определяется по формуле:
m=ρ*V
а его объем по формуле:
V = (4/3)*π*R³
Тогда:
m = (4/3)*ρ*π*R³
Имеем:
m₁ = (4/3)*ρ*π*R₁³ (1)
m₂ = (4/3)*ρ*π*R₂³ (2)
Разделим (2) на (1) и после сокращения получаем ВАЖНОЕ правило:
m₂ / m₁ = (R₂/R₁)³
- отношение МАСС шаров равно КУБУ отношения их радиусов.
Подставляем данные:
m₂ / 48 = (1,5 /1)³
m₂ = 48*1,5² = 48*3,375 = 162 г
ответ:
МАССА шара (но не его ВЕС) равна 162 грамма