М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Сutie2004
Сutie2004
04.09.2021 17:53 •  Алгебра

24.11. Упростите выражение: 1) sin(а - в) – sing cosC.; 3) cos(а — В) — cosC. cosp; 2) sina. sinf = cos(a + В): 4) cosa sinſ + sin(a - B). - - ата

👇
Открыть все ответы
Ответ:
sergeu3522p09njx
sergeu3522p09njx
04.09.2021
Перепишем:
(x^2+4b^2+a^2+4bx+2ax+4ab)-a^2+2a^2b+\\-6ab-6b+15\leqslant 0

В левой части неравенства угадывается формула квадрата суммы, всё, что осталось, переносим в правую часть.
(x+2b+a)^2\leqslant -(2b-1)a^2+6ab+6b-15

Если нужно, чтобы у неравенства не было решений, правая часть должна была отрицательной:
-(2b-1)a^2+6ab+6b-15 0

Вспоминаем, что нужно найти такие b, чтобы такое неравенство выполнялось при всех a. Относительно a левая часть либо линейная функция (при b = 1/2), либо квадратичная.

Разбираем случаи:

1) b = 1/2. Тогда при всех a должно быть так:
12-3a 0
Понятно, что это выполняется не при всех a, так что b = 1/2 в ответ входить не должно.

2) b не равно 1/2. Квадратный трёхчлен (2b-1)a^2-6ab+15-6b должен принимать только положительные значения. Как известно, так будет, если: 1. Коэффициент при a^2 положительный и 2. Дискриминант отрицательный.

Первое условие:
2b-1 0\\b \dfrac12

Второе условие:
\dfrac D4=9b^2+(6b-15)(2b-1) < 0\\21b^2-36b+15 < 0\\7b^2-12b+5 < 0\\b\in\left(\dfrac57,1\right)

Окончательно 5/7 < b < 1
4,8(45 оценок)
Ответ:
pudova20001katya
pudova20001katya
04.09.2021
Так как EC - биссектриса, то:
\frac{DC}{ED} = \frac{CK}{EK} \ \ \textless \ =\ \textgreater \ \ \frac{CK}{DC}= \frac{EK}{ED}
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
x= \frac{x_1+\lambda *x_2}{1+\lambda} &#10;\\y= \frac{y_1+\lambda *y_2}{1+\lambda} &#10;\\\lambda= \frac{m}{n}
ищем длины сторон:
для этого используем формулу |AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}
|ED|=\sqrt{(3+4)^2+7^2}=\sqrt{98}&#10;\\|EK|=\sqrt{(3-8)^2+(2-3)^2}=\sqrt{26}&#10;\\|DK|=\sqrt{144+64}=\sqrt{208}
находим координаты точки C:
x_1=8;\ x_2=-4;\ y_1=3;\ y_2=-5&#10;\\\lambda= \frac{CK}{DC} = \frac{EK}{ED} = \frac{\sqrt{26}}{\sqrt{98}}=\sqrt{ \frac{26}{98} }=\sqrt{ \frac{13}{49} } = \frac{\sqrt{13}}{7} &#10;\\C( \frac{8+ \frac{\sqrt{13}}{7} *(-4)}{1+ \frac{\sqrt{13}}{7}} ; \frac{3+ \frac{\sqrt{13}}{7}*(-5)}{1+ \frac{\sqrt{13}}{7}} )=C( \frac{8- \frac{4\sqrt{13}}{7} }{ \frac{7+\sqrt{13}}{7} } ; \frac{3- \frac{5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}} )=
=C( \frac{ \frac{56-4\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}}; \frac{ \frac{21-5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}})=C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
теперь определим вид треугольника для этого используем теорему косинусов:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
DK^2=ED^2+EK^2-2ED*EK*cosE&#10;\\cosE= \frac{ED^2+EK^2-DK^2}{2ED*EK} = \frac{98+26-208}{2\sqrt{98*26}}\ \textless \ 0
cosE<0 поэтому угол тупой и треугольник тупоугольный
ответ:
1) C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
2) треугольник тупоугольный
4,6(72 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ