Пусть первый маляр выполнит работу за х дней; тогда второй маляр выполнит работу за х+1 дней; а третий маляр выполнит работу за х+4 дней; производительность второго маляра равна 1/(х+1) часть работы за 1 день; производительность второго маляра равна 1/(х+4) часть работы за 1 день; совместная производительность второго и третьего маляров равна 1/(х+1) + 1/(х+4)=(х+4+х+1)/(х+1)(х+4)=(2х+5)/(х+1)(х+4) часть работы за 1 день; а всю работу второй и третий маляр выполнят за 1: (2х+5)/(х+1)(х+4)= (х+1)(х+4)/(2х+5) день; По условию второй и третий маляры выполнят всю работу за то же время, что один первый маляр. Составим уравнение: (х+1)(х+4)/(2х+5)=х; (х+1)(х+4)=2х^2+5х; х^2+5х+4=2х^2+5х; х^2=4; х=2; первый маляр выполнит всю работу за 2 дня. ответ: 2
Это задача на производительность труда. http://free.megacampus.ru/xbookM0005/index.html?go=part-027*page.htm здесь формулы. t - время одной девочки, t+3 - время другой, уравнение будет 1/t + 1/(t+3) = 1/2/ решаем, получится квадратное уравнение (tквадрат) -t -6 =0. решаем его, получим корень с положительным значением = 3 часа. Это время одной девочки, у другой будет 6 часов. Проверка. Для первой девочки Всю квартиру она убирает за 3 часа, сколько уберет за 2 часа---пропорция х=1*2 /3 = 2/3 части квартиры. Для второй девочки всю квартиру убирает за 6 часов, за 2 часа уберет 1*2/6 =1/3 часть квартиры. 1/3+2/3 =1 -вся квартира за 2 часа--верно.
a = 12,5
4 * 12,5² - 20 * 12,5 + 25 = 4 * (25/2)² - 250 + 25 = 4 * 625/4 - 250 + 25 = 625 - 250 + 25 = 400
a = 0
4 * 0² - 20 * 0 + 25 = 4 * 0 - 0 + 25 = 0 + 25 = 25
a = -2
4 * (-2)² - 20 * (-2) + 25 = 2² * 2² + 40 + 25 = 2⁴ + 40 + 25 = 16 + 40 + 25 = 81