Примем за 1 - объем цистерны
Пусть t цис./ч - производительность "медленного" насоса.
Тогда 3t цис./ч - производительность "быстрого" насоса.
(t+3t) цис./ч - производительность системы при совместной работе этих двух насосов.
(t+3t) - объем работы системы из двух насосов за 2ч 15мин.
Получим уравнение:
9t = 1
Значит, - цис./ч - производительность "медленного" насоса.
Тогда - цис./ч - производительность "быстрого" насоса.
Следовательно, ч - потребуется "быстрому" насосу на заполнение цистерны.
ответ: 3 ч.
Найдём координаты вектора . Для этого все координаты вектора
нужно умножить на 2:
По такому же принципу найдём координаты вектора :
Чтобы найти координаты вектора , вычтем соответствующие координаты:
Длина произвольного вектора вычисляется по формуле
:
ответ: .
***
Координаты середины отрезка есть среднее арифметическое координат конца отрезка:
***
По условию точка делит сторону
пополам (и так же с двумя другими точками). Найдём координаты точки
Расстояние между точками и
(т. е. длина медианы) равно:
То есть .
То же самое проделаем с двумя другими медианами:
- - - - - - -
***
Если что-либо будет непонятно — спрашивайте.
(2-2)3-24(z-6)=132-7
Объяснение:
2*3-2*3-24*z+24*6=132-7
6-6-24z+144=125
0-24z=125-144
-24z= -19
19=24z
24z=19
x=19/24