так
Объяснение:
а) n-ый член геометрической прогрессии ищется по формуле:

Тогда пятый член этой прогрессии равен:

б) Аналогично по формуле n-го члена геом. прогрессии вычисляем девятый член прогрессии:

в) Сумма первых n членов геометрической прогрессии ищется по следующей формуле:

Тогда сумма первых восьми членов этой прогрессии равна:

г) Аналогично с в) по формуле суммы n первых членов геометрической прогрессии вычисляем сумму первых пяти членов этой прогрессии:

д) Предполагается, что нужно найти сумму бесконечно убывающей геометрической прогрессии:

Тогда
А) -36; - 12; -4;

Сумма бесконечно уб. г.п. 
Б) 
Сумма бесконечно убывающей геометрической прогрессии:

e) используя n-ый член геометрической прогрессии, рассмотрим пятый член этой прогрессии:

Так как по условию q>0, то q=3

Сумма первых восьми членов этой прогрессии равна:

Cначала группируем слагаемые, как нам удобно, затем выносим общие множители, в третьем примере нужно воспользоваться формулой квадрата разности .