М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
олькаlove1
олькаlove1
07.02.2022 02:53 •  Алгебра

Разложите на множители 1) x^2+x-6 2) 2x^2-x-3 3)x^2-6x+9

👇
Ответ:
LoveSmile78900987
LoveSmile78900987
07.02.2022

Cначала группируем слагаемые, как нам удобно, затем выносим общие множители, в третьем примере нужно воспользоваться формулой квадрата разности .

1)\ \ x^2+x-6=(x^2+2x)+(-3x-6)=x(x+2)-3(x+2)=(x+2)(x-3)2)\ \ 2x^2-x-3=(2x^2+2x)+(-3x-3)=2x(x+1)-3(x+1)=(x+1)(2x-3)3)\ \ x^2-6x+9=x^2-2\cdot x\cdot 3+3^2=(x-3)^2=(x-3)(x-3)

4,8(95 оценок)
Ответ:
GreenTea111
GreenTea111
07.02.2022

так

Объяснение:


Разложите на множители 1) x^2+x-6 2) 2x^2-x-3 3)x^2-6x+9
4,5(49 оценок)
Открыть все ответы
Ответ:
Cat125387
Cat125387
07.02.2022

а) n-ый член геометрической прогрессии ищется по формуле:

b_n=b_1q^{n-1}

Тогда пятый член этой прогрессии равен:

b_5=b_1q^4=125\cdot \bigg(\dfrac{1}{5}\bigg)^4=\dfrac{1}{5}

б) Аналогично по формуле n-го члена геом. прогрессии вычисляем девятый член прогрессии:

b_9=b_1q^8=100000\cdot \bigg(\dfrac{1}{5}\bigg)^8=0.256

в) Сумма первых n членов геометрической прогрессии ищется по следующей формуле:

S_n=\dfrac{b_1(1-q^n)}{1-q}

Тогда сумма первых восьми членов этой прогрессии равна:

S_8=\dfrac{b_1(1-q^8)}{1-q}=\dfrac{4(1-2^8)}{1-2}=\boxed{1020}

г) Аналогично с в) по формуле суммы n первых членов геометрической прогрессии вычисляем сумму первых пяти членов этой прогрессии:

S_5=\dfrac{b_1(1-q^5)}{1-q}=\dfrac{6(1-4^5)}{1-4}=\boxed{2046}

д) Предполагается, что нужно найти сумму бесконечно убывающей геометрической прогрессии:

         S=\dfrac{b_1}{1-q}

Тогда

А)  -36; - 12; -4;

q=\dfrac{b_2}{b_1}=\dfrac{-12}{-36}=\dfrac{1}{3}

Сумма бесконечно уб. г.п. S=\dfrac{-36}{1-\dfrac{1}{3}}=\dfrac{-36\cdot 3}{3-1}=\boxed{-54}

Б) q=\dfrac{b_2}{b_1}=\dfrac{18}{-54}=-\dfrac{1}{3}

Сумма бесконечно убывающей геометрической прогрессии:

S=\dfrac{-54}{1+\dfrac{1}{3}}=\dfrac{-54\cdot3}{3+1}=\boxed{-40.5}

e) используя n-ый член геометрической прогрессии, рассмотрим пятый член этой прогрессии:

b_5=b_1q^4=\underbrace{b_1q^2}_{b_3}\cdot q^2=b_3q^2~~~\Leftrightarrow~~ q=\pm\sqrt{\dfrac{b_5}{b_3}}=\pm\sqrt{\dfrac{0.45}{0.05}}=\pm3

Так как по условию q>0, то q=3

b_1=\dfrac{b_5}{q^4}=\dfrac{0.45}{3^4}=\dfrac{0.05}{9}

Сумма первых восьми членов этой прогрессии равна:

S_8=\dfrac{b_1(1-q^8)}{1-q}=\dfrac{0.05(1-3^8)}{9(1-3)}=\boxed{\dfrac{164}{9}}

4,6(80 оценок)
Ответ:
курлык35
курлык35
07.02.2022
Y= 2x³ -1     d(f) = (-∞;   +∞)     e(f) = (-∞; +∞) точки   пересечения   с oy :   y = 2·0³ -1 = -1       :   a(0; -1) точки   пересечения   с ox :   2x³ -1 =0     ⇒     x³ -(∛1/2)³=0     (x-∛1/2)[x²+∛1/2  ·x +(∛1/2)²]=0       a) x=∛1/2       ⇒ b(∛1/2 ; 0       b)   x²+∛1/2  ·x +(∛1/2)²=0           x=[ -∛1/2 +/-  √[(∛1/2)² -4(∛1/2)²]   ;   d= -3(∛1/2)²< 0  ⇒                     нет пересечений     кроме   точки   b(∛1/2 ; 0)   точки   экстремума   : f'(x) = 0        6x²=0   ⇒ x=0         ⇒ y=2·0 -1=1   график :   кубическая   парабола   пересекая   координаты   в   точках         а(0; -1) и в(∛1/2 ; 0)
4,8(69 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ