М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dzhusanastasia
dzhusanastasia
25.09.2022 07:19 •  Алгебра

решить задания на квадратные корни


решить задания на квадратные корни

👇
Ответ:
AliceKrauch
AliceKrauch
25.09.2022

Держи, а второе задание надо делать?


решить задания на квадратные корни
4,4(86 оценок)
Открыть все ответы
Ответ:
Jannalizahappy
Jannalizahappy
25.09.2022

1)       ac2-ad+c3-cd-bc2+bd=  = (ac2 – ad) + (c3 –

bc2) + (bd – cd) = a·(c2 – d) + c2·(c – b) + d·(b     – c) = a·(c2 – d) +

c2·(c – b) – d·(c – b) = a·(c2 – d) + c2·(c – b) – d·(c – b) = a·(c2 –

d) + (c – b)·(c2 – d) = (c2 – d)·(a + c – b)

2)  mx2+my2-nx2-ny2+n-m= x2 ( m - n ) + y2 ( m - n ) - ( m - n ) = ( m-n ) (x2 + y2 - 1 )  

3)   am2+cm2-an+an2-cn+cn2= m2 (a + c ) + n2 ( a + c ) - n ( a + c ) = ( a+ c) ( m2 + n2 - n) 

4)   xy2-ny2-mx+mn+m2x-m2n= y2 ( x - n ) + m2 ( x - n) - m ( x - n ) = ( x-n) ( y2 + m2 - m ) 

5)   a2b+a+ab2+b+2ab+2=ab ( a + b + 2 )   + ( a+ b+ 2 ) = 2 ( a+ b + 2 ) 

6)   x2-xy+x-xy2+y3-y2=   x ( x –   y + 1) –   y 2 ( x –   y + 1)=( x –   y + 1)( x –   y 2 ).

4,4(4 оценок)
Ответ:
LOSS903903
LOSS903903
25.09.2022
Для нахождения экстремумов (в т.ч. минимумов), нужно взять производную, приравнять её нулю и решить. Полученные значения проверить на максимум и минимум.

y=x-ln(x+6)+3
Область допустимых значений x >-6

y'=(x-ln(x+6)+3)'=1- \frac{1}{x+6} =0 \\ \\ \frac{1}{x+6} =1 \\ \\ x+6=1 \\ \\ x=-5

Имеем одно экстремальное значение х = -5. Если производная в этой точке меняет знак с минуса на плюс, то это минимум. Для практической проверки следует подставить в выражение производной значение икс несколько меньше (-5) и несколько больше (-5). Обычно следует выбирать такие значение, чтобы легче считалось.

Слева, или меньше (-5) выбираем х = -5,5 (в данном случае нельзя брать меньше минус 6, т.к. выйдем из ОДЗ).
y'(-5,5) = 1- \frac{1}{-5,5+6} =1- \frac{1}{0,5} =1-2=-1\ \textless \ 0

Справа, или больше (-5) выбираем х = 0.
y'(0) = 1- \frac{1}{0+6} =1- \frac{1}{6} = \frac{5}{6} \ \textgreater \ 0

Итак, мы видим, что производная (слева направо) меняет свой знак с минуса на плюс. Это означает, что найденный экстремум является минимум. Если было наоборот, то был бы максимум.

x_{min}=-5 \\ \\ y(-5)=x-ln(x+6)+3=-5-ln(-5+6)+3=-5-ln1+3=-2
4,4(49 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ