n=1: 1 = (1(1+1)/2)^2 = (1*2/2)^2=1^2=1 => для n=1 - верно
n=k: 1^3+2^3+...+k^3=(k(k+1)/2)^2 - для k
n=k+1: 1^3+2^3+...+(k+1)^3 = ((k+1)(k+2)/2)^2 - для k+1
Вернемся к n=k, прибавим к нему соответствующее значение (k+1), то есть (k+1)^3
1^3+2^3+...+k^3+(k+1)^3 = (k(k+1)/2)^2 + (k+1)^3 = k^2*(k+1)^2/4 + (k+1)^3 = (k+1)^2 * (k^2/4 + (k+1)) = (k+1)^2/4 (k ^2+ 4k + 4) = (k+1)^2/4*(k+2)^2 = ((k+1)(k+2)/2)^2 - теперь сравните полученный результат с n=k+1.
Так как они равны, то по методу математической индукции исходное выражение верно при любом значении n, что и требовалось доказать
Свои данные подставь и всё будет норм6)
В треугольнике ABC угол С равен 90,СН- высота,ВС=14, sin A= 4/7. Найдите AH.
Длина катета ВС равна призведению гипотенузы АВ на sinA . Следовательно гипотенуза будет равна ВС / sinA
АВ = ВС / sinA = 14/(4/7)=14*7/4=24,5
Найдём по теореме Пифагора сторону АС
АВ²=АС²+ВС²
АС²=АВ²-ВС²
АС=√(24,5²-14²)=20,11
Рассмотрим треугольник АНС . Поскольку СН высота опущенная на гипотенузу то угол АНС прямой . Таким образом СН=АСsinA
СН= 20,11*(4/7)=11,49
Из теоремы Пифагора следует
АС²=АН²+СН²
АН²=АС²-СН²
АН=√(20,11²-11,49²)
АН=16,5
Большой угол равен 94°
Объяснение:
Потому что от 180°-86°=94°
Думаю .