Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Пусть хкм/ч-скорость второго, тогда скорость первого равна х+10км/ч. Когда указывается, что тот или иной объект добрался до пункта назначения за какое-то время раньше или позже, необходимо от меньшей скорости, то есть хкм/ч, отнять большую. Расстояние S=560 км, скорость первого u=х+10км/ч, а скорость второго u=xкм/ч. Таким образом, составляем уравнение: 560/х -560/х+10=1. Решая это дробно-рациональное уравнение, получим квадратное уравнение х2+10х-5600=0, положительным корнем которого является число 2.5.ответ:2.5км/ч-скорость второго автомобиля, а скорость первого 12.5 км/ч.
Смотри решение на фото..
В 1 примере ошибка в условии примера :b(a+c) +5a+5(?)