Примем за 1 объем бассейна. Время наполнения бассейна в часах: x - через обе трубы, x+16 - только через 1-ю трубу, x+25 - только через 2-ю трубу. Скорости наполнения: 1/x - через обе трубы, 1/(x+16) - только через 1-ю трубу, 1/(x+25) - только через 2-ю трубу. Значит, 1/(x+16)+1/(x+25)=1/x. Умножим обе части уравнения на x(x+16)(x+25): x(x+25)+x(x+16)=(x+16)(x+25), x^2+25x+x^2+16x=x^2+41x+400, 2x^2+41x=x^2+41x+400, x^2=400. Так как x>0, то x=20. Через обе трубы бассейн наполняется за 20 часов, только через 1-ю трубу - за 20+16=36 часов, только через 2-ю трубу - за 20+25=45 часов. Проверка: 1/36+1/45, 5/180+4/180=9/180=1/20. ответ: обе трубы наполняют бассейн за 20 часов.
y=(x-2)^3,
(x-2)^3=y,
x-2=∛y,
x=∛y+2;
y=1-x^3,
1-x^3=y,
x^3=1-y,
x=∛(1-y);
y=(x+3)^3-1,
(x+3)^3-1=y,
(x+3)^3=y+1,
x+3=∛(y+1),
x=∛(y+1)-3.