М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1Продавец1
1Продавец1
27.06.2022 19:40 •  Алгебра

Двое рабочих на одинаковых станках изготавливают одинаковые детали. Было взято случайным образом по 2400 деталей, изготовленных каждым из них, и оказалось, что число бракованных деталей у первого рабочего составило 12, а у второго – 18. Определите: а)есть ли существенная разница в проценте допускаемого ими брака; б) сколько нужно взять деталей, изготовленных каждым рабочим, чтобы обнаружить разницу в доле брака по крайней мере в 4%.

👇
Ответ:
air7789
air7789
27.06.2022

а) нет (в задаче проценты брака меньше 1)
б) можно брать сколько угодно деталей, но разница не станет равна 4%, так как они делают браки в процентах от количества деталей, поэтому как не меняй количество деталей процент брака останется тот же

4,6(59 оценок)
Открыть все ответы
Ответ:
Kotliarrostislav
Kotliarrostislav
27.06.2022

См. рисунок

1. Правильный шестиугольник, состоит из шести равносторонних треугольников.

Найдем сторону шестиугольника AB=r=48/6=8м.

Рассмотрим ΔСDO в нем CD=DO=0,5a (где а - сторона квадрата) ⇒ a=2CD

По теореме Пифагора найдем  СD

r²=CD²+DO²=2CD² ⇒ r=CD√2⇒CD=\frac{r}{\sqrt{2} }= \frac{8}{\sqrt{2}} м

a=2*\frac{8}{\sqrt{2}}=8\sqrt{2} м

2. Из задачи №1. мы убедились, что радиус описанной окружности равен стороне правильного шестиугольника.

Площадь правильного шестиугольника равна

S=\frac{3\sqrt{3}r^{2}}{2}

r=\sqrt{\frac{2S}{3\sqrt{3}}}=\sqrt{\frac{2*72\sqrt{3}}{3\sqrt{3}}}=\sqrt{48}=4 \sqrt{3} см

Длина окружности равна L=2πr=2π4√3=π*8√3≈43,5 см

3.  Площадь сектора равна

S=\pi r^{2} *\frac{n}{360}= \pi 12^{2} \frac{120}{360} =\pi \frac{144}{3}≈151 см²

(где n - градусная мера дуги сектора)


1) периметр правильного шестиугольника вписанного в окружность,равен 48м. найди сторону квадрата,впи
4,4(77 оценок)
Ответ:

Объяснение:

7tg^2 x + 3tg x + 2cos^2 x - 7cos x + 1 = 0

Можно применить универсальную тригонометрическую подстановку.

t = tg(x/2), тогда cos(x)=\frac{1-t^2}{1+t^2}, tg(x)=\frac{2t}{1-t^2}. Подставляем:

7*\frac{4t^2}{(1-t^2)^2}+3*\frac{2t}{1-t^2}+2*\frac{(1-t^2)^2}{(1+t^2)^2} -7*\frac{1-t^2}{1+t^2}+1=0

Приводим к общему знаменателю (1-t^2)^2*(1+t^2)^2:

\frac{28t^2(1+t^2)^2}{(1-t^2)^2(1+t^2)^2} +\frac{6t(1-t^2)(1+t^2)^2}{(1-t^2)^2(1+t^2)^2} +\frac{2(1-t^2)^4}{(1-t^2)^2(1+t^2)^2}-\frac{7(1-t^2)^3(1+t^2)}{(1-t^2)^2(1+t^2)^2}+1=0

Избавляемся от дробей:

28t^2(1+2t^2+t^4) + 6(t-t^3)(1+2t^2+t^4) + 2(1-2t^2+t^4)(1-2t^2+t^4) -

- 7(1+t^2)(1-3t^2+3t^4-t^6) + (1-2t^2+t^4)(1+2t^2+t^4) = 0

Раскрываем скобки:

28t^2 + 56t^4 + 28t^6 + 6t - 6t^3 + 12t^3 - 12t^5 + 6t^5 - 6t^7 + 2 - 4t^2 + 2t^4 -

- 4t^2 + 8t^4 - 4t^6 + 2t^4 - 4t^6 + 2t^8 - 7 - 7t^2 + 21t^2 + 21t^4 - 21t^4 - 21t^6

+ 7t^6 + 7t^8 + 1 - 2t^2 + t^4 + 2t^2 - 4t^4 + 2t^6 + t^4 - 2t^6 + t^8 = 0

Приводим подобные:

t^8*(2+7+1) - 6t^7 + t^6*(28-4-4-21+7+2-2) - 6t^5 + t^4*(56+2+8+2+21-21+1-4+1)

+ 6t^3 + t^2*(28-4-4-7+21-2+2) + 6t + (2-7+1) = 0

10t^8 - 6t^7 + 6t^6 - 6t^5 + 66t^4 + 6t^3 + 34t^2 + 6t - 4 = 0

Делим все на 2

5t^8 - 3t^7 + 3t^6 - 3t^5 + 33t^4 + 3t^3 + 17t^2 + 3t - 2 = 0

Это уравнение имеет 2 иррациональных корня:

t1 = tg(x/2) ≈ -0,387

x/2 ≈ -arctg(0,387) + П*k

x1 ≈ -2arctg(0,387) + 2П*k, k ∈ Z

t2 = tg(x/2) ≈ 0,25

x/2 ≈ arctg(0,25) + П*k

x2 ≈ 2arctg(0,25) + 2П*k, k ∈ Z

В общем, у меня такое чувство, что в задании опечатка.

Слишком сложно получилось.

Ну, или это задание из математической спецшколы.

4,6(65 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ