1. Пусть
Решать надо методом интервалов, для этого надо найти нули функции , решим для уравнение
Получаем разложение
Там интервалы были, знаки на них +-+, выбрали средний
Возвращаемся к замене
Такой переход имели право сделать, так как функция - монотонно возрастающая функция.
2. - парабола с ветвями, направленными вниз,
- просто прямая и фигура, образованная при их пересечении будет такова, что кусок параболы будет лежать выше.
Вспомним, что для на некотором интервале, то площадь фигуры будет равна
В нашем случае нужно вычислить пределы, а это как раз абсциссы точек пересечения, то есть нужно решить уравнение
, пределы нашли, вычисляем:
4. x = 1 ; 2 ; 3 ; 4
5. x = ;
; 3 ; 2
Объяснение:
4. (x² - 5x)(x² - 5x + 10) + 24 = 0
Произведем замену: (x² - 5x) = t
Тогда: t(t + 10) + 24 = 0
t² + 10t + 24 = 0
D = 10² - 4·24 = 100 - 96 = 4
;
Произведем обратную размену: t = (x² - 5x)
• (x² - 5x) = -4
x² - 5x + 4 = 0
D = (-5)² - 4·4 = 25 - 16 = 9
;
• (x² - 5x) = -6
x² - 5x + 6 = 0
D = (-5)² - 4·6 = 25 - 24 = 1
;
ответ: x = 1 ; 2 ; 3 ; 4
5. (x² - 5x + 2)(x² - 5x - 1) = 28
Произведем замену: x² - 5x = t
(t + 2)(t - 1) = 28
t² - t + 2t - 2 = 28
t² + t - 30 = 0
D = 1² - 4·(-30) = 1 + 120 = 121
;
Произведем обратную размену: t = (x² - 5x)
• x² - 5x = 5
x² - 5x - 5 = 0
D = (-5)² - 4·(-5) = 25 + 20 = 45
;
• (x² - 5x) = -6
x² - 5x + 6 = 0
D = (-5)² - 4·6 = 25 - 24 = 1
;
ответ: x = ;
; 3 ; 2
При значенні аргументу 0.8
Объяснение:
Для початку розкриймо дужки в функції:
у= 1/2(4x - 6) - 3(0.25х - 2)
у = 2х - 3 - 0.75х + 6
у = 1.25х + 3
Оскільки, значення функції (у) нам дано, то знайдемо значення аргументу (х):
4 = 1.25х + 3
1.25х = 1
Розділимо ліву і праву частини на 0.25:
5х = 4
х = 4/5
х = 0.8
Маємо відповідь: значення функції дорівнює 4 при значенні аргументу 0.8.