1. у = (15-х) / 2 чтобы (у) было целым, (15-х) должно быть четным 15-х = 2(к+1) = 2к+2 и 15-х = -2к-2 х = 13-2к и 17+2к, где к=0,1,2,3... подставив эти выражения в выражение для (у), найдем и формулу для (у)... (13-2к; к+1) и (17+2к; -к-1), где к=0,1,2,3... 2. х = (17-у) / 6 чтобы (х) было целым, (17-у) должно быть кратно 6 17-у = 6(к+1) = 6к+6 и 17-у = -6к-6 у = 11-6к и 23+6к, где к=0,1,2,3... подставив эти выражения в выражение для (х), найдем и формулу для (х)... (к+1; 11-6к) и (-к-1; 23+6к), где к=0,1,2,3...
x² + 4x + 4 = 4x + 16
x² + 4x - 4x = 16 - 4
x² = 12
x = √12
x = - √12
2) 4( x - 1)² = ( x+ 2)²
4( x² - 2x + 1) = x² + 4x + 4
4x² - 8x + 4 - x² - 4x - 4 = 0
3x² - 12x = 0
3x( x - 4) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
3x = 0
x = 0
x - 4 = 0
x = 4
3) ( 3x - 1)² = 3( 1 - 2x)
9x² - 6x + 1 = 3 - 6x
9x² - 6x + 6x = 3 - 1
9x² = 2
9x² - 2 = 0
D = b² - 4ac = 0 - 4×9×(-2) = 72
x1 = ( 0 + √72) / 18 = √9×8 / 18 = 3√8 / 18 = √8 / 6 = 2√2 / 6 = √2 / 3
x2 = - √2 / 3
ответ: +/ - √2 / 3.
4) ( x + 3)² = 3( x + 1)
x² + 6x + 9 = 3x + 3
x² + 6x - 3x + 9 - 3 = 0
x² + 3x + 6 = 0
D= b² - 4ac = 9 - 4×6 = 9 - 24 = - 15 - дискриминант отрицательный,значит,корней нет.
ответ: корней нет.