Объяснение:
a + b = 5; ab = 3
a^3*b^2 + a^2*b^3 = a^2*b^2*(a+b) = (ab)^2*(a+b) = 3^2*5 = 9*5 = 45
(a-b)^2 = a^2 + b^2 - 2ab = a^2 + 2ab + b^2 - 4ab = (a+b)^2 - 4ab = 5^2 - 4*3 = 13
a^4 + b^4
Здесь сложнее. Сначала найдем
a^2 + b^2 = a^2 + 2ab + b^2 - 2ab = (a+b)^2 - 2ab = 5^2 - 2*3 = 19
Теперь найдем
(a^2 + b^2)^2 = a^4 - 2a^2*b^2 + b^4 = a^4 + b^4 - 2(ab)^2
a^4 + b^4 = (a^2 + b^2)^2 + 2(ab)^2
Но мы знаем, что
(a^2 + b^2)^2 = 19^2 = 361.
Отсюда
a^4 + b^4 = (a^2 + b^2)^2 + 2(ab)^2 = 19^2 + 2*3^2 = 361 + 18 = 379
3/8
Объяснение:
Поскольку числитель на 5 меньше знаменателя, дробь имеет вид
x-5--. x
Если числитель этой дроби уменьшить на 2, а знаменатель увеличить на 16, то получится дробь
x-7--. x+16
Получаем уравнение
x-5 x-7 1 - - = - - + -. xx+16 3
Домножив обе части этого равенства на 3x (x+16) и преобразовав, получаем квадратное уравнение:
3 (x-5) (x+16) = 3 (x-7) x+x (x+16),
3 (x²+11x-90) = 3x²-21x+x²+16x,
x²-38x+240=0.
Дискриминант D=38²-4·240=484=22², корни x = (38±22) / 2=30 и 8. Этим корням соответствуют две дроби
25 3 - и -.30 8
Первая сократимая, вторая несократимая.