1)Чтобы найти возрастание и убывание функции нужно найти экстремумы и посмотреть как будет вести себя функция при малейшем отклонении. значит экстремумы в точках -(1;-1) а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой . 2) значит экстремумы в точках (-2;16),(2;16) А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2 убывает на промежутках [-2;2] возрастает (-∞;2]∪[2;+∞) 3)сначала найдём производные 1 производная : x∉R видим что первой производной нет ,ищем вторую функция выпукла: (-∞;0) f"(x)<0 функция вогнута (0;+∞) f"(x)>0
q^(n-1)=256 (1-q^n)=341*(1-q) или, что то же самое: (q^n-1)=341*(q-1) Вероятно, все ж , q -целое, тогда либо q=2 n=9 либо 4 n=5 либо 16 n=3 256 n=2 Легко видеть, что годится только q=4 n=5 ответ: q=4 n=5 б) 243* (3^(-n)+1)=182*(1/3+1) 243*(1-(-3)^(-n))=182*4/3 729 -3^6*(-3)^(-n)==728 (3^6)*(-3)^(-n)=1 ответ: n=6 an=243*(-1/(3^5))=-1
ответ: - 2,5 .
Объяснение:
у = 5√( 3 - х ) + 4 ; х₀ = 2 ; у '( x₀ ) - ?
y ' = ( 5√( 3 - х ) + 4 )' = 5 * 1/[ 2√( 3 - х ) ] * ( 3 - x )' + ( 4 )' = - 5/[2√( 3 - х )] ;
y ' = - 5/[2√( 3 - х )] ; у '( x₀ ) = - 5/[2√( 3 - 2 )] = - 5/2 = - 2,5 .