Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
3x+2y-6=0 чтобы найти точку пересечения с осью абсцисс, нужно y приравнять к нулю в уравнении и выразить х, -3х+2*0-6=0 х=-2 значит точка пересечения с осью абсцисс (ох) это точка (-2,0) чтобы найти точку пересеч. с осью ординат нужно х приравнять к нулю и найти у -3*0+2y-6=0 y=3 значит точка пересечения с оу точка (0,3) если точка к принадлежит графику, значит при подстановки туда координат точки к мы получим тождество, т.е. первую координату точки к ставим вместо х, а вторую координату вместо у -3*1/3 +2*3,5-6=0 получили тожедство 0=0, значит точка принадлежит.
Объяснение:
,
,
,
,
;
1) ;
2) y∈R