М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mqu
mqu
19.02.2021 22:57 •  Алгебра

В прямоугольный треугольник с катетами 18 ед. изм. и 18 ед. изм. вписан квадрат,
имеющий с треугольником общий прямой угол.
Вычисли периметр квадрата.
ОТВЕТ: Периметр квадрата равен ... ед. изм.

👇
Ответ:
daimon708
daimon708
19.02.2021
Ответ:

1. Обозначим вершины треугольника АВС, угол С = 90°. Вершины квадрата СКМL.

АС = 9 ед. изм., ВС = 9 ед. изм.

2. Треугольник вам дан по условиям задачи прямоугольный и равнобедренный. Тут вообще все просто.

Можно решить:

1. Через среднюю линию прямоугольного треугольника. Она равна 1/2 катета, соответственно сторона квадрата должны быть равна 9/2=4,5 ед. изм.

Периметр 4.5*4 = 18 ед. изм.

Или можно так решить:

2. Треугольники АВС и АКМ подобны, так как имеют два равных угла: угол А общий, углы АМК и АВС равны как соответственные при параллельных прямых КМ и ВС и секущей АВ. Значит, отношения сходственных сторон равны: АК/АС = КМ/ВС.

Принимаем стороны квадрата за х.

Составим уравнение:

(9- х)/9 = х/9

18х = 81

х = 4,5 ед. изм.

Периметр квадрата 4,5 х 4 = 18 ед. изм.

Обьяснение:
Ответ:

1. Обозначим вершины треугольника АВС, угол С = 90°. Вершины квадрата СКМL.

АС = 9  ед. изм
4,8(100 оценок)
Открыть все ответы
Ответ:
ms71431
ms71431
19.02.2021

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Иррациональные числа

ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — {\displaystyle e^{\pi }}e^{\pi } и π

Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.

О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].

К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.

Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].

4,5(54 оценок)
Ответ:
marineshelunts
marineshelunts
19.02.2021

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Иррациональные числа

ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — {\displaystyle e^{\pi }}e^{\pi } и π

Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.

О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].

К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.

Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].

4,5(63 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ