М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
алинка554
алинка554
24.02.2020 10:57 •  Алгебра

решить задачу На первой полке игрушек в 4 раза больше чем на второй Когда с первой полки перестали 15 игрушек их стало поровну Сколько всего игрушек?

👇
Ответ:
qwerty665
qwerty665
24.02.2020

50 игрушек

Объяснение:

Пусть на второй полке - x игрушек.

На первой в 4 раза больше игрушек чем на второй , тогда - 4x игрушек.

Когда с первой полки переставили 15 игрушек их стало поровну , то есть решаем уравнение:

4x - 15 = x + 15 \\ 3x = 30 \\ x = 10

На первой полке 4х = 4·10 = 40 игрушек , на второй полке х = 10 игрушек , всего 40 + 10 = 50 игрушек

4,8(12 оценок)
Открыть все ответы
Ответ:
A, b - катеты, c - гипотенуза
S=(1/2)ab=60;   c=13;   a^2+b=2=c^2 (Пифагор)

ab=120;  a^2+b^2=169

Добавим ко второму уравнению удвоенное первое:

a^2+2ab+b^2=409;
(a+b)^2=409;
a+b=√(409);
P=a+b+c=√(409)+13.

ответ "плохой", но что поделаешь.

Но если немного покопать дальше, начинаются совсем интересные вещи. Найдем, какое максимальное значение площади может иметь прямоугольный треугольник с гипотенузой c. Ясно, для этого у него должна быть максимально возможная высота. Опишем окружность вокруг треугольника, поскольку он прямоугольный, центр окружности совпадает с серединой гипотенузы. Теперь становится очевидным, что максимальная высота равна радиусу окружности, то есть c/2.
Отсюда Площадь равна (1/2)c·(c/2)=c^2/4.
В нашем случае c=13, S_(max)=169/4=42,25.
Поэтому площадь прямоугольного треугольника с гипотенузой 13 не может равняться 60,

Примите мои соболезнования в связи с кончиной задачи
4,5(89 оценок)
Ответ:
Seref
Seref
24.02.2020
A, b - катеты, c - гипотенуза
S=(1/2)ab=60;   c=13;   a^2+b=2=c^2 (Пифагор)

ab=120;  a^2+b^2=169

Добавим ко второму уравнению удвоенное первое:

a^2+2ab+b^2=409;
(a+b)^2=409;
a+b=√(409);
P=a+b+c=√(409)+13.

ответ "плохой", но что поделаешь.

Но если немного покопать дальше, начинаются совсем интересные вещи. Найдем, какое максимальное значение площади может иметь прямоугольный треугольник с гипотенузой c. Ясно, для этого у него должна быть максимально возможная высота. Опишем окружность вокруг треугольника, поскольку он прямоугольный, центр окружности совпадает с серединой гипотенузы. Теперь становится очевидным, что максимальная высота равна радиусу окружности, то есть c/2.
Отсюда Площадь равна (1/2)c·(c/2)=c^2/4.
В нашем случае c=13, S_(max)=169/4=42,25.
Поэтому площадь прямоугольного треугольника с гипотенузой 13 не может равняться 60,

Примите мои соболезнования в связи с кончиной задачи
4,7(28 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ