вершина параболы в точке (1, 5 ; -0,5) , ось абсцисс пересекает в двух точках ( 1 ; 0) и (2 ; 0) || 1 и 2 корни трехчлена 2x² - 6x + 4 || ,а ось ординат в точке (0; 4) пересекает в двух точках
3. Все целые числа кроме { -1 ; 0 ; 1 ; 2 ; 3 }
другое Найдите целые решения неравенства x² - 2x -6 ≤ 0
При каких значениях параметра "a" уравнение x^2-(a+4)x+2a+6 =0 имеет один корень на луче [1;∞) .
Обозначаем : t = x -1 ⇒ x = t+1 получаем: (t+1)² -(a+4)(t+1) +2a+6 =0 ⇔ t² -(a+2)t +a+3 =0 , x ≥ 1 ⇒ t ≥ 0. Один корень должен быть неотрицательным. t =0 ⇒ a = - 3 . Уравнение t² -(a+2)t +a+3 =0 [следовательно и x² - (a+4)x+2a+6 =0 ] имеет корней, если D=(a+2)² - 4(a+3) ≥ 0⇔ a² -8 ≥ 0 ⇒ a ∈( -∞ ; - 2√2] ∪ [2√2 ;∞) .
Один (однократный) корень, если a =± 2√2 При a = - 2√2 ⇒ t=(a+2)/2 = - √2+1 < 0 не удовлетворяет ; При a = 2√2 ⇒ t = (a+2)/2 = √2+1 > 0_ удовлетворяет .
Корни разных знаков : { D > 0 ; a+3 < 0. ⇔ { a ∈( -∞ ; - 2√2) ∪ (2√2 ;∞) ; a < - 3. ⇒ a ∈( -∞ ; - 3).
2. График y = 2x² - 6x + 4 = 2(x -1,5)²- 0,5 изображен неправильно
вершина параболы в точке (1, 5 ; -0,5) , ось абсцисс пересекает в двух точках ( 1 ; 0) и (2 ; 0) || 1 и 2 корни трехчлена 2x² - 6x + 4 || ,а ось ординат в точке (0; 4) пересекает в двух точках
3. Все целые числа кроме { -1 ; 0 ; 1 ; 2 ; 3 }
другое Найдите целые решения неравенства x² - 2x -6 ≤ 0
ответ : { -1 ; 0 ; 1 ; 2 ; 3 }
5. Решите неравенство : (x² -5x +6) / ( x² -7x) ≤ 0
- - - - - - -
(x² -5x +6) / ( x² -7x) ≤ 0 ⇔(x-2)(x-3) / x(x-7) ≤ 0 ⇔
{ x ( x - 2)(x - 3) ( x-7 ) ≤ 0 ; x( x - 7 ) ≠ 0 .
решается методом интервалов
+ + + + + 0 - - - - - [2] + + + + + [3] - - - - - -(7 ) + + + + + + +
ответ : x ∈ (0 ; 2] ∪ [3 ; 7) .