М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Tumka2003
Tumka2003
05.06.2022 03:12 •  Алгебра

что бы войти в подьезд, на дверях дома нужно набрать код - трехзначное число, состояние из трех различных цифр из десяти: 0,1,2...,9, которые нужно нажать последовательно. входящий не знал эту комбинацию цифр. сколько различных вариантов набора цифр он должен перепробовать

👇
Ответ:
msakinat
msakinat
05.06.2022
У нас есть 10 возможных цифр (0, 1, 2, ..., 9), и нам нужно выбрать 3 различных цифры в определенном порядке. Это соответствует перестановкам из 10 по 3.

Формула для перестановок из n по k выглядит следующим образом:

P(n, k) = n! / (n - k)!

Где "!" обозначает факториал.

В нашем случае, n = 10 (количество возможных цифр) и k = 3 (количество выбираемых цифр). Подставим значения в формулу:

P(10, 3) = 10! / (10 - 3)!
= 10! / 7!

Теперь вычислим значение:

10! = 10 * 9 * 8 * 7!

Подставим это значение в формулу:

P(10, 3) = (10 * 9 * 8 * 7!) / 7!

Здесь 7! в числителе и знаменателе сокращаются:

P(10, 3) = 10 * 9 * 8 = 720

Таким образом, входящему нужно будет перепробовать 720 различных вариантов набора цифр.
4,4(24 оценок)
Открыть все ответы
Ответ:
привет6365
привет6365
05.06.2022

Практически очевидно, что если сумма квадратов двух положительных чисел меньше 100, то сумма самих этих чисел не может быть больше 64. Докажем это строго.

Первый

Пусть сумма квадратов двух положительных чисел х и у равна 100.

x^2+y^2=100

Составим выражение для суммы чисел х и у и найдем при каком условии оно принимает максимальное значение и чему равно это значение.

S=x+y

Выразим у из первого условия: y=\sqrt{100-x^2}

S=x+\sqrt{100-x^2}

Найдем производную:

S'=1+\dfrac{1}{2\sqrt{100-x^2}} \cdot(100-x^2)'=1-\dfrac{2x}{2\sqrt{100-x^2}} =1-\dfrac{x}{\sqrt{100-x^2}}

Найдем точки экстремума:

1-\dfrac{x}{\sqrt{100-x^2}} =0

\dfrac{x}{\sqrt{100-x^2}} =1

x=\sqrt{100-x^2}

x^2=100-x^2

2x^2=100

x^2=50

x=\pm\sqrt{50}

x=\pm5\sqrt{2}

Учитывая, что х - положительное:

x=5\sqrt{2} - точка максимума

y=\sqrt{100-(5\sqrt{2}) ^2}=\sqrt{100-25\cdot2}=\sqrt{50} =5\sqrt{2}

Максимум достигается при x=y=5\sqrt{2} и он равен:

S_{\max}=5\sqrt{2}+5\sqrt{2}=10\sqrt{2}

Итак, даже при условии, что сумма квадратов равна 100, сама сумма не может быть больше 10\sqrt{2}. По условию сумма квадратов меньше 100, значит сумма самих чисел меньше 10\sqrt{2} и точно не может быть больше 64. Значит, искомая вероятность равна 0.

Второй

Графически решить систему \begin{cases} x0,\,\,y0 \\ x^2+y^264 \end{cases} и найти отношение площади фигуры, соответствующей решению этой системы, к площади, являющейся решением системы \begin{cases} x0,\,\,y0 \\ x^2+y^2 (четверть окружности радиуса 10). Однако, первая система решений иметь не будет, значит вероятность равна 0.

ответ: 0

4,7(13 оценок)
Ответ:
катя4799
катя4799
05.06.2022
Подходят такие пары целых чисел: (0; 0); (0; 1); (0; 2); (0; 3); (0; 4); (0; 5); (0; 6); (0; 7); (0; 8) - 9 пар. (1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (1; 7) - 7 пар. (2; 2); (2; 3); (2; 4); (2; 5); (2; 6); (2; 7) - 6 пар. (3; 3); (3; 4); (3; 5); (3; 6); (3; 7) - 5 пар. (4; 4); (4; 5); (4; 6) - 3 пары (5; 5); (5; 6) - 2 пары всё. всего 9 + 7 + 6 + 5 + 3 + 2 = 32 пары. из них сумму меньше 8 имеют 20 пар. вероятность равна 20/32 = 5/8
4,5(98 оценок)
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ