Если площадь s(x) фигуры x разделить на площадь s(a) фигуры a , которая целиком содержит фигуру x, то получится вероятность того, что точка, случайно выбранная из фигуры x, окажется в фигуре a. обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 15.00 до 16.00 равно 60 мин. в прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата oabc. друзья встретятся, если между моментами их прихода пройдет не более 13 минут, то есть y-x< 13, y< x+13 (y> x) и x-y< 13 , y> x-13 (y< x).этим неравенствам удовлетворяют точки, лежащие в области х.для построения области х надо построить прямые у=х+13 и у=х-13.затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-13.кроме этого точки должны находиться в квадрате оавс.площадь области х можно найти, вычтя из площади квадрата оавс площадь двух прямоугольных треугольников со сторонами (60-13)=47: s(x)=s(oabc)-2*s(δ)=60²-2*1/2*47*47=3600-2209=1391.
Программа на Руби
for n in -10000..10000
for k in 0..1000
p [n,k] if 10*n + 5 == k*k
end
end
Вывод
[2, 5]
[22, 15]
[62, 25]
[122, 35]
[202, 45]
[302, 55]
[422, 65]
[562, 75]
[722, 85]
[902, 95]
[1102, 105]
[1322, 115]
[1562, 125]
[1822, 135]
[2102, 145]
[2402, 155]
[2722, 165]
[3062, 175]
[3422, 185]
[3802, 195]
[4202, 205]
[4622, 215]
[5062, 225]
[5522, 235]
[6002, 245]
[6502, 255]
[7022, 265]
[7562, 275]
[8122, 285]
[8702, 295]
[9302, 305]
[9922, 315]
т.е. подразумевается что есть и другие решения, если расширять диапазон