Пусть функция определена на отрезке
Разобьём отрезок произвольным образом на n частей точками:
В каждом интервале произвольным образом выбираем точку
Cумма
,
где - длина частичного отрезка
,
называется интегральной суммой функции на отрезке
.
Определенным интегралом от функции на отрезке
называется предел интегральных сумм
, при условии, что длина наибольшего частичного отрезка стремится к нулю
Геометрическая интерпретация определённого интеграла - площадь криволинейной трапеции
Пусть функция определена на отрезке
Разобьём отрезок произвольным образом на n частей точками:
В каждом интервале произвольным образом выбираем точку
Cумма
,
где - длина частичного отрезка
,
называется интегральной суммой функции на отрезке
.
Определенным интегралом от функции на отрезке
называется предел интегральных сумм
, при условии, что длина наибольшего частичного отрезка стремится к нулю
Геометрическая интерпретация определённого интеграла - площадь криволинейной трапеции
-58x+40x<45-8+17
-18x<54
x>-3