Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
Для нахождения max или min нужно воспользоваться производной
y= cos x
y`= - sin x
y`=0; -sin x=0; x=πn; n∈Z
точки, в которых производная равна 0, являются точками экстремума функции. (т.е. точками или max или min)
определим знаки производной учитывая наш отрезок
0 (п/4) п(5п/3) 2п
y`<0 y`>0
функция убывает функция возрастает
Значит х=п, точка минимума функции
cos (п) = -1
Определим точки максимума на отрезке
т.к. максимумы функции бубт точки х=0 и х= 2п
то проверим значение функции вточках х=п/4 и х=5п/3 и сравним
cos (п/4)=√2/2; cos (5п/3)=1/2
Значит наименьшее значение функции в точке х=п и равно -1
наибольшее значение функции в точке х= п/4 и равно √2/2