Принцеп такой же подумай. Преобразовываем ур-е к типу y=kx+b, где k-это угловой коэфициент. В данном случае: 1) 3х-y+6=0 -y= -6-3x y=3x+6, здесь k1=3
2) x-y+4=0 -y= -x-4 y=x+4, здесь k2=1
Воспользуемся формулой tg(альфа) =k2-k1/1+k1k2
У нас k1=3, k2=1
Подставляем: tg(альфа) =(1-3)/1+(3*1)= -2/4=-1/2=1/2 всякий раз, как в знаменателе появляется нуль, угол θ надо считать равным ±90° (как поворот на +90°, так и поворот на -90° совмещает любую из перпендикулярных прямых с другой) .
По таблицам тригонометрических функций находим, что альфа=26° 33´ 54˝ градуса.
1. Произведение чисел, переменных и их степеней называется одночленом. Пример: 3⋅5=(3⋅5)⋅(⋅)=152 2. Если в одночлене первым записан числовой множитель, а произведение одинаковых степеней переменных записано в виде одной степени, то такой вид одночлена называют стандартным видом. Пример: 10⋅12=5⋅2⋅123=53 . 3. Числовой множитель одночлена, записанного в стандартном виде, называется коэффициентом одночлена. Степенью одночлена называется сумма показателей степеней всех переменных. Пример: Коэффициент одночлена 53 равен 5, 6 — одночлен первой степени (переменная в первой степени); 4. Чтобы умножить одночлен на одночлен, нужно перемножить их численные коэффициенты, показатели степеней одинаковых переменных сложить, а переменные, входящие в состав только одного из множителей, перенести в произведение без каких-либо изменений. 5. Многочленом называется сумма одночленов. Пример: 32 −7 . 6. Одночлены, у которых произведения переменных равны, хотя их порядок может отличаться, называются подобными одночленами. Пример: 3х^2у 7. Многочлены, содержащие в своей записи подобные члены, с тождественных преобразований могут быть приведены к виду, в котором не будет подобных членов. Такое преобразование многочлена называется приведением подобных членов. 8. Степенью многочлена от нескольких переменных называют наивысшую степень входящих в него одночленов. 9. Многочлен стандартного вида – это многочлен, все члены которого являются одночленами стандартного вида, среди которых нет подобных членов. 10, 11. Для осуществления действия сложения или вычитания многочленов, необходимо:
записать сумму или разность многочленов в зависимости от поставленной задачи; в записанном выражении произвести раскрытие скобок, результатом чего станет многочлен; привести полученный во втором шаге многочлен в стандартный вид. 12. Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый член многочлена и полученные произведения сложить. Пример: a ⋅ b + c = a ⋅ b + a ⋅ c. 13. Разложение многочлена на множители – тождественное преобразование, превращающее сумму в произведение нескольких множителей. 14. Пример вынесения общего множителя за скобки: +=(+). Пример группировки: 3−52−3+152
Группируем члены парами, получаем: (3−52)−(3−152)
2(−5)−3(−5)
(2−3)(−5) 15. Чтобы умножить многочлен на многочлен, нужно: каждый одночлен первого многочлена умножить на каждый одночлен второго многочлена; полученные произведения сложить (то есть записать друг за другом с учетом знаков полученных при умножении). Пример: (a − b)(−a − 2) = a · (−a) − 2a + ab + 2b = −a2 − 2a + ab + 2b
-1≤sinα≤1 |*3
-3≤sinα≤3 |-1
-4≤sinα≤2
наим.зн= -4
наиб.зн.= 2