Пусть х километров - длина первой половины пути. Тогда x/34 ч. - время, за которое проехал автомобиль эту половину (ведь время равно расстоянию делить на скорость). Вторая половина пути имеет ту же длину х км. (она ведь половина, как и первая). Поэтому ее автомобиль проехал за x/51 часов. Средняя скорость движения, по определению, равна общему пройденному пути (который равен 2х км) делить на общее затраченное время, которое равно x/34+x/51 часов. Итак, средняя скорость равна 2x/(x/34+x/51)=2*34*51x/(51x+34x)=2*34*51/85=40,8 км/ч. В решении не понадобилось находить расстояние х, оно благополучно сократилось при нахождении средней скорости.
Из двух последних уравнений следует, что x4=x5. Тогда из первого и третьего уравнений находим x1=x2+1. Из первого уравнения находим x4=x5=x6+1, а из третьего и четвёртого уравнения следует x3=x4+1=x5+1=x6+2. Из четвёртого и пятого уравнения следует x2=x6+3. Наконец, из первого и шестого уравнений следует Отсюда x2=x1-1, x3=x1-2, x4=x5=x1-3, x6=x1-4, x7=x1-5. Складывая все уравнения системы, получаем 2*x1+2*x2+2*x3+2*x4+2*x5+2*x6+2*x7=2*(x1+x2+x3+x4+x5+x6+x7)=2*(x1+x1-1+x1-2+x1-3+x1-3+x1-4+x1-5)=2*(7*x1-18)=9+8+8+9+6+4+4=48, откуда 7*x1-18=48/2=24, 7*x1=42, x1=6 лет - первому сыну. Тогда x2=5, x3=4, x4=x5=3, x6=2, x7=1. ответ: первому сыну - 6 лет, второму - 5, третьему - 4, четвёртому и пятому - по 3 года, шестому - 2 года, седьмому - 1 год.
9x³+12x²-10x+4=0,
9x³-6x²+2x+18x²-12x+4=0,
x(9x²-6x+2)+2(9x²-6x+2)=0,
(9x²-6x+2)(x+2)=0,
x+2=0, x1=-2;
9x²-6x+2=0,
D=-36<0, нет решений.
х=-2.