Объяснени1) y=5x-3
y=3x+1
Координаты пересечения:
5х-3=3х+1
5х-3х=1+3
2х=4
х=2
у=5*2-3=7
у=3*2+1=7
(2;7)
Для построения одна точка известна для обоих графиков, осталось найти еще по одной точке для каждого графика:
у=5х-3 первая точка (2;7)
х=0
у=5*0-3=-3
вторая точка (0;-3)
у=3х+1 первая точка (2;7)
х=0
у=3*0+1=1
вторая точка (0;1)
2) -4х+3=(1/2)х+3
(-4 1/2)х=0
х=0
у=-4*0+3=3
у=(1/2)*0+3=3
координата пересечения (0;3)
Построение:
х=-1
у=-4*(-1)+3=7
(0;3)(-1;7) для у=-4х+3
х=2
у=1/2*2+3=4
(0;3)(2;4) для у=(1/2)х+3
Графики в файле.
е:
В первой задаче надо построить параболу y=x в квадрате рожками вниз (если перед Х стоит знак минус) и на этом же провести прямую линию у=2х-3.
Она по сравнению с у=2х смещена на 3 вниз. Точки пересечения параболы и прямой дадут ответ.
Во второй задаче обычная парабола у = Х квадрат (рожками вверх).
а) отметим на ней тоски (-2,4), (1,1), (3,9)
б) при у=4 х1=-2 х2=2 (две точки (-2,4) и (2,4))
в) это левая ветка параболы: на наибольшее значение у=9, при х=-3
наименьшее значение у=0 при х=0.
Нарисовать не могу - нет сканера.
Обозначим за х км/час -скорость теплохода, тогда по течению скорость теплохода составит: х+3 (км/час); против течения: х-3 (км/час), скорость теплохода по озеру составляет : х км/час
Зная, что время находится по формуле: t=S/V , тогда теплоход проплыл ро течению: 7/(х+3) часа, а против течения 15/(х-3) часа и учитывая, что время в пути по реке и озеру согласно условию задачи было одинаковым, составим уравнение:
7/(х+3)+15/(х-3)-24/х
Решим это уравнение. Прведём его к общему знаменателю:
7*(х-3)*х+15(х+3)*х=24*(х-3)*(х+3)
7х^2-21x+15x^2+45x=24x^2-216
7x^2+15x^2-24x^2-21x+45x+216=0
-2x^2+24x+216=0 Перейдём от биквадратного уравнения к простому квадратному уравнению разделив его на (-2)
х^2-12x-108=0
x1,2=12/2+-sqrt(36+108)=6+-sqrt144=6+-12
х1= 6+12-18
х2=6-12=-6 ( не соответствует условию задачи)
Скорость теплохода х равна 18км/час, а по течению реки: 18 км/час+3км/час=21 км/час
ответ: 21 км/час