а) модуль числа а это само число а, если оно взято со знаком + и число !а!=-а, если а число отрицательное, т.е. взято со знаком -. Отсюда можно сделать вывод что модуль никогда не может быть равен отрицательному числу, абсолятное значение всегда положительно, поэтому единственное число, удоволтворяющее !x!=-x это 0, поэтому под буквой а можешь отметить только 0
б) Во втором случае этому уравнению будет эквивалентна система уравнений вида
x+2=x+2 - тождественно верно
x+2=-(x+2)-решаем
x+2=-x-2
x+x+2+2=0
2x+4=0
2x=-4
x=-2
Значит все точки числовой прямой начиная с x=-2 и в положительнную сторону будут удоволетворять уравнению, отсюда ответ будет вся числовая прямая начиная с -2 и больше
|3x+2|=5,
3x+2=5 или 3x+2=-5,
3x=3, 3x=-7,
x1=1, x2=-2⅓,
http://webmath.exponenta.ru/s/c/algebra/content/chapter3/section1/paragraph8/theory.html
|x-2|<5,4,
x-2<5,4, x<7,4;
или -(x-2)<5,4, x-2>-5,4, x>-3,4,
-3,4<x<7,4;
x∈(-3,4;7,4)
{|x-2|<5,4, -5,4<x-2<5,4, -3,4<x<7,4}
|3x+2|>5,
3x+2>5, 3x>3, x>1,
или -(3x+2)>5, 3x+2<-5, 3x<-7, x<-2⅓,
x∈(-∞,-2⅓)U(1,+∞)
http://webmath.exponenta.ru/s/c/algebra/content/chapter3/section2/paragraph4/theory.html
a²-4>0
(a-2)(a+2)>0
+ _ +
-2 2
a<-2 log(1/6)x<-2⇒x>36
a>2 log(1/6)x>2⇒x<1/36
Так как основание логарифма меньше 1,то функция убывающая и знак неравенства меняется на противоположный.
lg(x^2+x-20) < lg(4x-2)
ОДЗ х²+х-20>0 x1+x2=-1 U x1*x2=-20⇒x1=-5 U x2=4
+ _ +
-5 4
x<-5 Ux>4
4x-2>0 ⇒x>1/2
x∈(4;≈)
x²+x-20<4x-2
x²-3x-18<0
x1+x2=3 U x1*x2=-18⇒x1=-3 U x2=6
+ _ +
-3 6
x∈(-3;6)
Совмещаем с ОДЗ⇒х∈ (4;6)
На данном промежутке только одно целое решение х=5.