Пусть первая бригада производит x деталей в час, вторая y, третья z. Тогда можно составить уравнение:
(x+y)/2 + 4z = x+y+z (из условия: Если бы первые две бригады работали в 2 раза медленнее, а третья бригада — в 4 раза быстрее, чем обычно, то норма была бы выполнена за то же время)
Из этого уравнения следует, что x+y= 6z.
x+y=2*(y+z) (из условия: первая и вторая бригады при совместной работе выполняют норму в 2 раза быстрее, чем вторая бригада совместно с третьей)
Приравниваем правые части двух последних уравнений:
6z=2*(y+z)
y=2z
Поскольку x+y= 6z, то x будет равно:
x = 6z - y = 6z- 2z = 4z.
ответ: в 4 раза.
ответ: это утверждение неверно
2) Заметим, что получившийся треугольник, образованный двумя касательными и хордой окружности будет равнобедренным. Так как касательные, проведенные из одной точки будут равными. Значит углы при основании хорде будут одинаковыми. Вычислим сколько градусов будет иметь угол при основании этого равнобедренного треугольника. По теореме о сумме углов треугольника
х+х+120=180
2х=180-120
2х=60
х=60:2
х=30 градусов.
Заметим. что треугольник, образованный хордой и центром окружности - тоже равнобедренный. Основанием этого треугольника будет снова хорда. А вот радиусы - боковые стороны нового треугольника. Теперь найти угол при основании этого треугольника будет несложно. Так как угол между касательной и радиусом равен 90 градусов. Угол между касательной и радиусом (90) = угол между касательной и хордой (30)+ угол между хордой и радиусом (этот угол надо найти).
90=30+а
а=90-30
а=60 градусов.
Значит два угла при основании у нового треугольника равны 60 градусов. На угол при вершине остается (по теореме о сумме углов треугольника)
180-(60+60)=180-120=60.
То есть у нового треугольника все углы по 60 градусов. Значит треугольник - равносторонний. Значит хорда будет равна радиусу окружности.
ответ: это утверждение верно.