- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
1)x2 + 8x + 7 = 0
D = b2 - 4ac
D = 64 - 28 = 36 = 6^2
x1,2 = -b ± √D/2a
x1 = -8 + 6/2 = - 2/2 = -1
x2 = -8 - 6/2= - 14/2 = -7
ответ: x1 = -1; x2 = -7
2) y=2x^2-8x
y=2x^2-8x=2x(x-4)=0
2x=0 x-4=0
x=0 x=4
3)-0.5x2 + 1x + 1.5 = 0
Делим на 0.5:
-x2 + 2x + 3 = 0
D = b2 - 4ac
D = 4 + 12 = 16 = 4^2
x1,2 = -b ± √D/2a
x1 = -2 + 4/-2 = - 2/2 = -1
x2 = -2 - 4/-2 = 6/2 = 3
ответ: x1 = -1; x2 = 3
4)-0.25x2 - 3x - 8 = 0
D = b2 - 4ac
D = 9 - 8 = 1
x1,2 = -b ± √D.2a
x1 = 3 + 1/-0.5 = - 4/0.5 = -8
x2 = 3 - 1/-0.5 = - 2/0.5 = -4
ответ: x1 = -8; x2 = -4