x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.Будь-яка квадратична функція (тобто, парабола) має вертикальну вісь симетрії, яка проходить через вершину цієї параболи.
Якщо f(4)=f(20), то це означає, що точки на параболі з абсцисами 4 та 20 симетричні відносно вісі симетрії параболи. З цього випливає, що вісь знаходиться посередині між точками з абсцисами 4 та 20, тобто, (4+20)/2 = 12, або ж х=12 - рівняння, яким задається вертикальна вісь симетрії.
З іншого боку, точки з абсцисами -5 та деяким невідомим числом "х" теж симетричні відносно цієї ж вісі симетрії х=12.
Звідси складемо рівняння відносно того, що ці дві точки також рівновіддалені від вертикальної прямої х=12:
(-5+х)/2 = 12
-5+х = 24
х = 29
Відповідь: х = 29
119.
х-у=7;
0,2ху=12;
х=7+у;
0,2(7у+у²)=12;
х=7+у;
у²+7у-60=0;
х₁=-5; х₂=12;
у₁=-12; у₂=5.
ответ: (-5;-12),(12;5).