Зная автора задания как специалиста (в частности) в области геометрии, после первых неудачных попыток сделать эту задачу я подумал о возможности применить геометрию, после чего появилась надежда на успех.
Во-первых, мы можем считать, что x > 0 (если x<0, то y(x)>y(-x), то есть при отрицательном x наименьшее значение достигаться не может. Значение y(0)=6 пока просто запомним).
Пусть x>0 - некоторое число. Рассмотрим два . треугольника, один со сторонами 2 и x и углом в 30° между ними, второй - со сторонами 4 и x и углом в 90° между ними. Совместив их по стороне, равной x, получим 4-хугольник ABCD со сторонами AB=2, BC=4, диагональю BD=x и углом ABC, который диагональ BD делит на углы ABD=30° и DBC=90°. По теореме косинусов
Поэтому y(x) при положительном x - это сумма сторон AD и DС. Меняя x, мы меняем вершину D, двигая ее по лучу с вершиной B (при неподвижных A, B и C). Ясно, что сумма будет минимальной, когда четырехугольник ABCD вырождается (это когда D лежит на AC), и равна стороне AC,
Поскольку ответом в задаче будет
Замечание. Значение в нуле в принципе мы могли не вычислять, считая, что при этом получается вырожденный четырехугольник с нулевой диагональю.
task/30428766 В копилке 1000 монет достоинством в 1 , 2 и 5 р на общую сумму 2000р. Сколько в копилке монет каждого достоинства, если известно, что количество однорублевых монет - простое число
"решение " Пусть количество монет достоинством соответственно 1 ,2 ,5 равны x , y и z. Можем написать систему:
{ x+y+z =1000 ; x*1 +2*y +5*z =2000.⇔
{2x+2y+2z = 2000 (два набора→2000) ; x+2y+5z =2000. ⇒
2x+2y+2z =x+2y+5z ⇔ x =3z , т.к. количество однорублевых монет - x простое число , то z =1 и x = 3 ; y =1000 -(x+y)=1000 - 4= 996.
ответ : 3 , 996 и 1 .