1. АО = ОС по условию,
ВО = OD по условию,
∠АОВ = ∠COD как вертикальные, ⇒
ΔАОВ = ΔCOD по двум сторонам и углу между ними.
2. NK = KP по условию,
∠MNK = ∠EPK по условию,
∠MKN = ∠ЕКР как вертикальные, ⇒
ΔMKN = ΔЕКР по стороне и двум прилежащим к ней углам.
3. АВ = AD по условию,
∠ВАС = ∠DAC по условию,
АС - общая сторона для треугольников ВАС и DAC, ⇒
ΔВАС = ΔDAC по двум сторонам и углу между ними.
4. ВС = AD по условию,
∠CBD = ∠ADB по условию,
BD - общая сторона для треугольников CBD и ADB, ⇒
ΔCBD = ΔADB по двум сторонам и углу между ними.
5. ∠MDF = ∠EDF по условию,
∠MFD = ∠EFD по условию,
DF - общая сторона для треугольников MDF и EDF, ⇒
ΔMDF = ΔEDF по стороне и двум прилежащим к ней углам.
6.
а) ∠МАВ = ∠NBA по условию,
∠МВА = ∠NAB по условию,
АВ - общая сторона для треугольников МАВ и NBA, ⇒
ΔМАВ = ΔNBA по стороне и двум прилежащим к ней углам.
б) АМ = BN из равенства ΔМАВ = ΔNBA (см. п. а))
∠АМН = ∠ВNН из равенства ΔМАВ = ΔNBA,
∠МАН = ∠МАВ - ∠НАВ
∠NBH = ∠NBA - ∠HBA, а так как ∠МАВ = ∠NBA по условию и ∠НВА = ∠НAB по условию, то и
∠MAH = ∠NBH, ⇒
ΔMAH = ΔNBH по стороне и двум прилежащим к ней углам.
7. МК = PN по условию,
MN = PK по условию,
NK - общая сторона для треугольников MNK и PKN, ⇒
ΔMNK = ΔPKN по трем сторонам.
8. ∠ABD = ∠CDB по условию,
∠ADB = ∠CBD по условию,
BD - общая сторона для треугольников ABD и CDB , ⇒
ΔABD = ΔCDB по стороне и двум прилежащим к ней углам.
9. ∠САВ = ∠EFD по условию,
∠АВС = ∠EDF по условию,
АВ = AD + DB
FD = FB + DB, а так как AD = BF по условию, то и
АВ = FD, ⇒
ΔСАВ = ΔEFD по стороне и двум прилежащим к ней углам.
10.
а) АС = ВС по условию,
∠СВЕ = ∠CAD по условию,
угол при вершине С - общий для треугольников СВЕ и CAD, ⇒
ΔСВЕ = ΔCAD по стороне и двум прилежащим к ней углам.
б) ∠ADC = ∠BEC из равенства треугольников СВЕ и CAD, ⇒
∠BDF = ∠AEF как смежные с равными углами,
∠DBF = ∠EAF по условию,
BD = BC - DC
AE = AC - EC, а так как ВС = АС по условию, и DC = EC из равенства треугольников СВЕ и CAD, то и BD = AE, ⇒
ΔBDF = ΔAEF по стороне и двум прилежащим к ней углам.
11. КН = ЕН по условию,
FK = PE по условию,
∠FKH = ∠PEH как смежные с равными углами, ⇒
ΔFKH = ΔPEH по двум сторонам и углу между ними.
12. DE = CE по условию,
∠ADE = ∠BCE как смежные с равными углами,
∠AED = ∠BEC как вертикальные, ⇒
ΔAED = ΔBEC по стороне и двум прилежащим к ней углам.
Объяснение:
1) 5 подарочных наборов и 5 коробок
как можно разместить?
В первую коробку мы можем положить любой из 5 наборов
во вторую коробку - любой из 4
в третью- любой из 3
в 4ю- любой из 2
и в 5-ю оставшийся набор
всего
2) даны цифры 1,2,3,4,7
нужно составить 4-х значное число- кратное 6
На 6 делятся числа кратные 2 и 3
кратные 2 должны оканчиваться на 2 или 4
кратные трем должны давать в семме цифр числа - число кратное 3
Первый вариант- наше число заканчивается на 2
тогда на оставшиеся 3 места идут 1,3,4,7
но 1+3+4+2 не кратно 3, 1+3+7+2 не кратно 3, 1+4+7+2 не кратно 3 и 3+4+7+2 не кратно 3
Второй вариант- наше число заканчивается на 4
тогда единственная комбинация это число состоящее из цифр 1,3,7, и 4
Количество таких чисел 3*2*1=6
3) Есть 6 маек и 4 наклейки
первую наклейку клеим на любую из 6, вторую на любую из 5, третью- на любую из 4 и последнюю наклейку на любую из 3
тогда всего
120*х=НСК(х,120)*НСД(х,120)
120*х=600*60
2х=600
х=300
ответ: 300