М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
леле7
леле7
21.01.2023 12:39 •  Алгебра

Запишите многочлен расположив его по убыванию степеней и укажите его степень 2y в кубе+ 5y в кубе-3y в четвёртой степени+ y в пятой степени -1

👇
Ответ:
катя1377
катя1377
21.01.2023
У^5-3у^4+7у^3-1. многочлены 5 степени
4,5(4 оценок)
Открыть все ответы
Ответ:
volfdima2011p0aaz8
volfdima2011p0aaz8
21.01.2023
Пусть х (км/ч) - скорость лодки в стоячей воде, тогда
х + 1 (км/ч) - скорость лодки по течению реки
х - 1 (км/ч) - скорость лодки против течения реки

S = v * t - формула пути
v = х + 1 + х - 1 = 2х (км/ч) - скорость сближения
t = 1,9 (ч) - время в пути
S = 98,8 (км) - расстояние между пристанями
Подставим все значения в формулу и решим уравнение:
2х * 1,9 = 98,8
3,8х = 98,8
х = 98,8 : 3,8
х = 26 (км/ч) - скорость лодки в стоячей воде;
(26 + 1) * 1,9 = 51,3 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая по течению реки;
(26 - 1) * 1,9 = 47,5 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая против течения реки.
ответ: 26 км/ч; 51,3 км; 47,5 км.
4,7(94 оценок)
Ответ:
катя46737889
катя46737889
21.01.2023
Область определения функции. ОДЗ:Точки, в которых функция точно неопределена: x=-3
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2/(6*x+18). 
Результат: y=0. Точка: (0, 0)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^2/(6*x+18) = 0. Решаем это уравнение  и его корни будут точками пересечения с X:
x=0. Точка: (0, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-6*x^2/(6*x + 18)^2 + 2*x/(6*x + 8)=0
Решаем это уравнение и его корни будут экстремумами:x=-6. Точка: (-6, -2)x=0. Точка: (0, 0)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:0Максимумы функции в точках:-6Возрастает на промежутках: (-oo, -6] U [0, oo)Убывает на промежутках: [-6, 0]Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, 
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=72*x^2/(6*x + 18)^3 - 24*x/(6*x + 18)^2 + 2/(6*x + 18)=0lim y'' при x->+-3
lim y'' при x->--3
(если эти пределы не равны, то точка x=-3 - точка перегиба)
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=-3. Точка: (-3, oo)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [-3, oo)Выпуклая на промежутках: (-oo, -3]Вертикальные асимптотыЕсть: x=-3Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^2/(6*x+18), x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim x^2/(6*x+18), x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^2/(6*x+18)/x, x->+oo = 1/6, значит уравнение наклонной асимптоты справа: y=1/6*xlim x^2/(6*x+18)/x, x->-oo = 1/6, значит уравнение наклонной асимптоты слева: y=1/6*xЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^2/(6*x+18) = x^2/(-6*x + 18) - Нетx^2/(6*x+18) = -(x^2/(-6*x + 18)) - Нетзначит, функция не является ни четной ни нечетной
4,5(37 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ