Предположим, что существует какое-либо дробное число, при возведении которого в квадрат можно получить два: (p/q)^2 = 2. При этом эта дробь несократима.
Запишем уравнение так: p^2 / q^2 = 2.
Умножим обе части уравнений на q^2, получим: p^2= 2q^2.
Выражение 2q^2 в любом случае должно быть четным, т. к. выполняется умножение на 2.
Значит, p^2 тоже четно.
Но известно, что квадрат нечетного числа дает нечетное число (например, 5^2 = 25), а квадрат четного – четное (4^2 = 16). Поэтому p должно иметь четное значение.
Если p четно, то его можно представить как p = 2^k. Тогда получим: (2k)^2 = 2q^2. Или 4k^2 = 2q^2.
Сократим полученное уравнение и получим: 2k^2 = q2.
Поскольку в левой части уравнения результат будет четным (т. к. происходит умножение на 2), то и q должно быть четным, чтобы его квадрат был четным.
Но вспомним,
ранее было доказано, что и p четно,изначально предполагалось, что взятая дробь p/q несократима.Если же и p, и q четные числа, то образованную ими дробь можно сократить на 2. Т. е. приходят к противоречию с условием и на этом основании делают вывод, что нет рациональной дроби, квадрат которой может быть равен 2.
2)x=-3, x=3
3)x=-7, x=7
4)x=-2, x=0
5)x=-10, x=10
6)x=-2*корень(3), x=2*корень(3)
7)x=-корень(5), x=корень(5)
8)x=0, x=10
9)x=0, x=5
10)x=-3, x=0
11)x=-13, x=13
12)x=0, x=10
13)x=-4, x=0
14)x=-14, x=14
15) x ∈ ∅;
16)x=-10, x=10
17)x=0, x=8