(x^(4))/(x^(2)-2) + (1-4x^(2))/(2-x^(2)) + 4 = 0, приведем все к общему знаменателю х^2-2, получим (х^4+4х^2-1+4х^2-8)/х^2-2=0,
х не может быть равен корню, из двух, т.к. в противном случае знаменатель будет равен 0, а на 0 делить нельзя; в числителе получилось х^4+4х^2-1+4х^2-8=0, х^4+8х^2-9=0, х^2=у, подставим в уравнение и получим
у^2+8у-9=0,
Д=64-4*1*(-9)=64+36=100
у1=(-8+10)/2*1=1
у2=(-8-10)/2*1=-9 (неудовл, т к в квадрате не может получится отрицательное число)
Точка M не принадлежит плоскости ABCD, а точка C - принадлежит, следовательно, прямая MC пересекает плоскость ABCD в точке C. Прямая AD лежит в плоскости ABCD, причём точка C-пересечение прямой MC с плосокстью не лежит на прямой AD.Тогда по признаку скрещивающихся прямых, AD и MC - скрещивающиеся (если прямая пересекает плоскость в точке, не лежащей на другой прямой в этой плоскости, то эти прямые - скрещивающиеся). 2) Угол между скрещивающимися прямыми можно получить параллельным переносом одной из прямых до пересечения с другой прямой.BC||AD и как раз пересекает MC.Тогда угол (AD,MC) = уг. MCB.Рассмотрим треугольник BMC. уг. MBC = 70°, уг. BMC = 65°.Тогда угол (AD,MC) = уг. MCB = 180°-(уг. MBC+уг. BMC)=180°-(70°+65°)=45°ответ: угол (AD,MC)=45°
А) Область определения данной функции есть множеством решений системы: x^2+6x+80; x1=-4; x2=-2 ноли функции f(x)=x^2+6x+8 x-4. + -- + ------------------------------------------------------------------------------------------------------------------> -4 -2 D(y)=(-~;-4]U[-2;~) б) Область определения данной функции есть множеством решений системы: x0, x0, IxI7 x(+-)7
(x^(4))/(x^(2)-2) + (1-4x^(2))/(2-x^(2)) + 4 = 0, приведем все к общему знаменателю х^2-2, получим (х^4+4х^2-1+4х^2-8)/х^2-2=0,
х не может быть равен корню, из двух, т.к. в противном случае знаменатель будет равен 0, а на 0 делить нельзя; в числителе получилось х^4+4х^2-1+4х^2-8=0, х^4+8х^2-9=0, х^2=у, подставим в уравнение и получим
у^2+8у-9=0,
Д=64-4*1*(-9)=64+36=100
у1=(-8+10)/2*1=1
у2=(-8-10)/2*1=-9 (неудовл, т к в квадрате не может получится отрицательное число)
х^2=1
х1=1
х2=-1