V - знак корня 1)V(x+9) =x-3 ОДЗ: {x+9>=0; x>=-9 {x-3>=0; x>=3 Решение ОДЗ: x>=3 Т.к. обе части уравнения неотрицательны, возведем их в квадрат: x+9= (x-3)^2 x+9= x^2-6x+9 x+9-x^2+6x-9=0 -x^2+7x=0 x^2-7x=0 x(x-7)=0 x=0; x=7 x=0 нам не подходит по ОДЗ ответ:{7} 2)V(x-2)= V(x^2-4) ОДЗ: {x-2>=0; x>=2 {x^2-4>=0; x<=-2, x>=2 Решение ОДЗ: x>=2 Возведем в квадрат обе части: x-2=x^2-4 x-2-x^2+4=0 -x^2+x+2=0 x^2-x-2=0 D=(-1)^2-4*1*(-2)=9 x1=(1-3)/2=-1 - не подходит по ОДЗ x2=(1+3)/2=2 ответ:{2} 3)V(12+x^2) <6-x В левой части неравенства стоит корень,принимающий только неотрицательные значения. Следовательно, и правая часть должна быть положительной. ОДЗ: {12+x^2>=0 при x e R {6-x>0, x<6 Решение ОДЗ: x<6 Возведем в квадрат обе части: 12+x^2<(6-x)^2 12+x^2<36-12x+x^2 12+x^2-36+12x-x^2<0 12x-24<0 12x<24 x<2 С учетом ОДЗ: x <2
Есть теорема, которая гласит, что если многочлен с целыми коэффициентами имеет рациональный корень x0=m/n (m/n - не сократимая дробь), то свободный член делится без остатка на m, а старший коэффициент многочлена делится без остатка на n. Поищем сначала целые корни. Из теоремы следует, что они должны быть делителем 1. То есть это либо 1 либо -1. Ни одно из этих значений не подходит. Ищем рациональные корни. Корни, очевидно, являются отрицательными числами, поэтому числитель дроби будет равен -1. Выпишем положительные делители 24, не считая 1: 2, 3, 4, 6, 8, 12, 24. Теперь проверим являются ли корнями дроби: -1/2, -1/3, -1/4, -1/6, -1/8, -1/12, -1/24. Проверяя первые три дроби получим, что они являются корнями. x=-1/2 x=-1/3 x=-1/4 Других корней нет, так как уравнение третьей степени с вещественными коэффициентами вообще не может иметь более 3 корней (вещественных или комплексных). Все.
49 ответ