Объяснение:
Записать в стандартном виде
400000 = 4*10^5
23000 = 2,3*10^4
8760000 = 8,76*10^6
1230 = 1,23*10^3
43 = 4,3*10^1
0,00008 = 8*10^-5
0,0076 = 7,6*10^-3
0,098 = 9,8*10^-2
0,54 = 5,4*10^-1
0,1 = 1*10^-1
7000000 = 7*10^6
560000 = 5,6*10^5
2130000 = 2,13*10^6
19700 = 1,97*10^4
51 = 5,1*10^1
0,0007 = 7*10^-4
0,00678 = 6,78*10^-3
0,042 = 4,2*10^-2
0,34 = 3,4*10^-1
0,9 = 9*10^-1
Записать в виде натурального числа или десятичной дроби:
5 ∙ 106 = 5000000
2,7 ∙ 103 = 2700
1,56 ∙ 104 = 15600
6,78 ∙ 102 = 678
3 ∙ 10-6 = 0,000003
1,2 ∙ 10-4 = 0,00012
4,76 ∙ 10-3 = 0,00476
2,3 ∙ 10-1 = 0,23
2 ∙ 105 = 200000
7,7 ∙ 104 = 77000
5,86 ∙ 105 = 586000
2,18 ∙ 103 = 2180
4 ∙ 10-5 = 0,00004
7,2 ∙ 10-5 = 0,000072
6,12 ∙ 10-2 = 0,0612
6,5 ∙ 10-1 = 0,65
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней
а) (x+y-2)^2=x^2+2*x*y-4*x+y^2-4*y+4
б) (2*x+y+z-1)^2=4*x^2+4*x*y+4*x*z-4*x+y^2+2*y*z-2*y+z^2-2*z+1