у = х + х³, y(-x) = (-x) + (-x)³ = -x - x³ = - (x + x³) - ф-ция нечетноя;
у = х² - 2, y(-x) = (-x)² - 2 = x² - 2 - четноя;
х^3 (-х)³ х³
у= ; у(-х) = = - - нечетная
х²+1 (-х)² + 1 х² + 1
1 1 1 1
у = х + ---, у(-х) = -х + = -х - = - (х + ) - нечетная
х -х х х
у = √1 - х²; у(-х ) = √1 - (-х)² = √1 - х² - четная
у = ³√х², у(-х) = ∛(-х)² = ∛х² - четная
В этом уравнении:
k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX);
b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY.
k = (yB - yA) / (xB - xA) ;
b = yB - k · xB.
Сначала надо найти уравнения сторон, а потом с тем же коэффициентом к - через вершины.
Уравнение сторон:
АВ - у = (-7/6)х+11/6,
ВС - у = (5/2)х+11/2,
АС - у = (-1/4)х-11/4.
Для линии А₁В₁ (через вершину С) у = (-7/6)х-33/6 и т.д.