М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fire31
fire31
19.03.2023 11:13 •  Алгебра

Поставь вместо знака такой одночлен, чтобы трехчлен можно было представить в виде квадрата двучлена: a) +20a+25 б) t^2-18t+ (t^2 - t в квадрате) в) 4с^2++9/16d^2 (4с^2 - 4c в квадрате. 9/16d^2 - девять дробь шестнадцатых, d в квадрате г) 9a^2+0,64b^2- (тоже самое- в квадрате) сделайте

👇
Ответ:
кирилл2088
кирилл2088
19.03.2023
A)4a^2+20a+25=(2a+5)^2
б)t^2-18t+81=(t+9)^2
3)4c^2+2*2c*3/4d+9/16d^2=(2c+3/16d)^2 ...2*2c*3/4d=3*c*d
4)
4,7(94 оценок)
Ответ:
Владс119
Владс119
19.03.2023
А) 4а^2 т.к. 4а^2+20а+25=(2а+5)^2
б)9 т.к. t^2-18t+9=(t-3)^2
в) 2*2*3/4 т.к  4с^2+2*2*3/4+9/16d^2 
г)(3а+0,8)(3а+0,8) 
4,8(29 оценок)
Открыть все ответы
Ответ:
Слон145
Слон145
19.03.2023

x_{1} = -3 + \sqrt{6}           x_{2} = -3 - \sqrt{6}           x_{3} = 1                x_{4} = -7

Объяснение:

(x² + 6x)² - 4(x² + 6x + 1) - 17 = 0

t = (x² + 6x)

t² - 4(t + 1) - 17 = 0

t² - 4t - 4 - 17 = 0

t² - 4t - 21 = 0

t² + 3t - 7t - 4 - 17 = 0 (Теорема Виета)

t² + 3t - 7t - 21 = 0

t(t + 3) - 7(t + 3) = 0

(t + 3)(t - 7) = 0

t₁ = -3; t₂ = 7

x² + 6x + 3= 0                                           x² + 6x - 7 = 0

D = b² - 4ac                                              D = b² - 4ac

D = 6² - 4 * 1 * 3                                        D = 6² - 4 * 1 * (-7)

D = 36 - 12                                                D = 36 + 28

D = 24                                                       D = 64

x_{1,2} = \frac{-b +- \sqrt{D} }{2a}                                           x_{3,4} = \frac{-b +- \sqrt{D} }{2a}

x_{1,2} = \frac{-6 +- \sqrt{24} }{2 * 1}                                          x_{3,4} = \frac{-6 +- \sqrt{64} }{2 * 1}

x_{1,2} = \frac{-6 +- 2\sqrt{6} }{2}                                          x_{3,4} = \frac{-6 +- 8 }{2}

x_{1} = \frac{2(-3 + \sqrt{6)} }{2}           x_{2} = \frac{2(-3 - \sqrt{6)} }{2}          x_{3} = \frac{2 }{2}               x_{4} = \frac{-14}{2}

x_{1} = -3 + \sqrt{6}           x_{2} = -3 - \sqrt{6}           x_{3} = 1                x_{4} = -7

4,7(88 оценок)
Ответ:
malgee4
malgee4
19.03.2023
Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
\displaystyle D(y)=(-\infty,0)\cup(0,+\infty)

График y= \frac{6}{x} получается с растягивания графика y= \frac{1}{x}(обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности.
Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно,  график y= \frac{6}{x} тоже является гиперболой.

Область значений:
E(y)=(-\infty ;0)\cup (0;+\infty )

Так как функция y= \frac{1}{x} принимает отрицательные значения на луче  (-\infty,0) то и y= \frac{6}{x}  принимает отрицательные значения на луче  (-\infty,0)

Функция нечётна, так как:
f(-x)=-f(x)\\ \frac{6}{-x}=- \frac{6}{x}

Таблица первых значений и сам график во вложении.

Постройте график функции y=6/x . какова область определения функции? при каких значениях х функция п
Постройте график функции y=6/x . какова область определения функции? при каких значениях х функция п
4,8(63 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ