1. Если прогрессия является геометрической, она удовлетворяет условию q=b2/b1=b3/b2 и т.д. или bn=b1*q^n-1 1) q=2/1=4/2=8/4=2 bn=q^n-1 2) q=9/-27=-3/9=1/-3=-1/3 bn=-27q^n-1=-27*(-1/3)^n-1 3) q=6/2=18/6=54/18=3 bn=2*3^n-1 4) q=-8/2=16/-8 не равно, данная последовательность не является геометрической ответ: 1,2,3 последовательности являются геометрическими прогрессиями 2. bn=1,5*2^n-1 n>0 n-целое, натуральное число Необходимо проверить все варианты: 1,5*2^n-1=4,5 2^n-1=3 Ни при каких значениях n не будет удовлетворяться данное выражение, т.о. 4,5 не является членом данной прогрессии. 1,5*2^n-1=6 2^n-1=4 2^n-1=2^2 n-1=2 n=3 6 является 3 членом данной геометрической прогрессии. 1,5*2^n-1=15 2^n-1=10 Ни при каких значениях n не будет удовлетворяться данное выражение, т.о. 15 не является членом данной прогрессии.
Решение: Сперва определим ОДЗ неравенства. Очевидно, что значение x не должно совпадать со значением 2. Поскольку, знаменатель - это неотрицательное число, то числитель тоже не должен быть отрицательным. Решается методом интервалов. В силу того, что сама дробь должна быть больше 0, то числитель тоже должен быть больше 0 (про знаменатель уже сказали). Как решать неравенство методом интервалов? На вашем примере, думаю, будет все ясно. Находим нули функций (иными словами, находим те значения x, так, чтобы функция была равна 0 и соблюдалось ОДЗ). Это: x=-2;3;4. Отмечаем значения на числовом луче. Определяем знакопостоянство: если x<-2, то числитель отрицателен (отмечаем на луче). При всех остальных значениях числитель - положительный (за исключением x=2, потому что при этом значении знаменатель обращается в нуль, а мы знаем,что на 0 делить нельзя). Получили интервал: отрицательный: И положительный: (рис. 2) Далее, снова отрицательный: И положительный: Но, в условии сказано: найти кол-во целых отрицательных чисел, удовлетворяющих неравенству. Опять же, обращаясь к нашему промежутку чисел, находим, что их только 2: -2 и -1. Однако, -2 обращает дробь в 0, поэтому, число только одно. ответ: -1