Вариант А1
№1
А) х²-4х+3=0
D=16-12=5=2²
x1=(4-2)/2=1
x2=(4+2)/2=3
Б) х²+9х=0
Х(х+9)=0
Х=0 или х+9=0
Х=-9
В) 7х²-х-8=0
D=1+224=225=15²
X1=(1-15)/14=-1
X2=(1+15)/14=16/14=8/7=1 целая 1/7
Г) 2x²-50=0
2x²=50
X²=25
X=5 или x=-5
№2
Пусть х (см) - ширина прямоугольника, тогда (х+5) (см) - длина прямоугольника. Площадь прямоугольника 36 см², прощадь считается по формуле а*б
Составим и решим уравнение:
36=х*(х+5)
Х²+5х-36=0
D=25+144=169=13²
X1=(-5-13)/2=-9
X2=(-5+13)/2=4
Так как значение стороны не может принимать отрицательное значение, то ширина прямоугольника равна 4 см, а длина (4+5)=9
№3
Умножим обе части на 7
7у²-9у+2=0
D=81-56=25=5²
У1=(9+5)/7=2
У2=(9-5)/7=2/7
№4
Если х=4, то
16+4-а=0
20-а=0
а=20
Найдем второй корень уравнения
Х²+х-20=0
D=1+80=81=9²
X1=(-1-9)/2=-5
X2=(-1+9)/2=4
Так как корень 4 нам уже известен, то второй корень будет х=-5
ответ: а=20, второй корень равен -5
Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Примеры.
\[1){x^2} + 18x = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (x + 18) = 0\]
ДОЛЖНО БЫТЬ ПРАВИЛЬНО
x - 10/x - 3 = 1
(xx - 10 - 3x)/x = 1
xx - 10 - 3x = 1
x = 5; -2