Определите число членов конечной прогрессии, если разность шестого и четвертого ее членов равна 216, а разность третьего и первого равна 8, а сумма всех членов равна 40.
Пусть y 1 член прогрессии,q-знаменатель, тогда 3 член равен q²y, 4 член q³y, 6 член равен q⁵y. По условию, 1)q⁵y-q³y=216, q³y(q²-1)=216 2)q²y-y=8, y(q²-1)=8 Подставляем выражение 2 в выражение 1: 8q³=216. q=3, 8y=8 y=1. qy=3 q²y=9 q³y=27 Сумма четырёх членов равна 1+3+9+27=40 ответ: 4
X²(-x² - 49) ≤ 49(-x² - 49) x²(-x² - 49) - 49(-x² - 49) ≤ 0 // перенесли все слагаемые влево (x² - 49)(-x² - 49) ≤ 0 // вынесли за скобку общий множитель (увидели, что и в x²(-x² - 49), и в 49(-x² - 49) есть (-x² - 49) -(x² - 49)(x² + 49) ≤ 0 // вынесли минус из (-x² - 49) (x² - 49)(x² + 49) ≥ 0 // разделили обе части неравенства на -1, поэтому поменялся знак x² + 49 всегда принимает положительные значения: оба слагаемые положительные, поэтому отрицательное или нулевое значение не получится. Тогда нужно, чтобы x² - 49 был неотрицательным (т.е. положительным + может быть нулем), т.к. иначе все выражение станет отрицательным. x² - 49 ≥ 0 Здесь решайте, как вам нравится: методом интервалов или рисуя параболу. В любом случае, находим нули: это -7; 7 – и наносим их на координатную ось. Если рисуете параболу: графиком функции y = x² - 49 является парабола ветвями вверх (a = 1 > 0), делаете эскиз (то есть рисуете параболу ветвями вверх, проходящую через найденные нули) и расставляете знаки: где парабола принимает отрицательные значения, т.е. располагается ниже оси x, там минус, где выше – там плюс. Нам нужны положительные решения, поэтому мы выбираем, где плюс (ответ чуть ниже). Если решаете методом интервалов: рисуете промежутки: до -7, от -7 до 7 и от 7 – и расставляете на них знаки. Коэффициент перед x > 0, начинаем с знака + (справа налево) и чередуем. ответ ниже. x ∈ (-∞; -7] ∪ [7; +∞).
ответ: x ∈ (-∞; -7] ∪ [7; +∞). Спрашивайте в комментариях, если что-то непонятно.
b4=b1*q*3
b3=b1*q*2
b1q*3(q*2-1)=216
b1(q*2-1)=8
q*2-1=8/b1
b1q*3*8/b1=216
q*3=216/8=27
q=3
Sn=b1(q*n-1)/q-1
40=3(3*n-1)/2
80=3*3n-3
3*(n+1)=83*3
3*(n+1)=249
n+1=5
n=4