М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ghrtoung
ghrtoung
11.04.2022 00:22 •  Алгебра

Тренажер 8 измерения углов определите четверть,в которой лежит угол 1. 100 2. 80 3. 300 4. 700 5. -200 6. -830 7. 1.2 п 8. 2.3 п 9. 3п/4 10. 4п/6

👇
Ответ:
2002dima14
2002dima14
11.04.2022
1-2,2-1,3-4,4-3,5-2,6-3,7-3,8-1,9-2
4,4(18 оценок)
Открыть все ответы
Ответ:
rgmabbasov
rgmabbasov
11.04.2022
Чтобы число делилось на 3, 4, 5 одновременно. число, оканчивающееся на 5, не может быть кратно 4, поэтому "5" вычеркиваем. 0 не вычеркиваем, так как числа, оканчивающиеся на 0 (как и на 5), кратны 5. число делится на 4, если последние две цифры этого числа образуют число, кратное 4. 20 кратно 4. но если мы ее вычеркнем, то нам придется вычеркнуть и 7, и 5, и 9(50, 70, 90не кратны 4), но уже получается что мы вычеркнули больше трех цифр, что недопустимо. поэтому последние цифры искомого числа 2 и 0. осталось нам воспользоваться признаком делимости на 3(сумма цифр кратного трём числа кратна 3). 8+6+9+5+7+2+0=37⇒ближайшие кратные 3 числа (<37) это 36, 33, 30, 27, 24, 21. 36 мы не можем получить, вычеркнув любые 2 цифры из 8, 7, 9, 5, 7. также не можем получить 33, 30, 27. а вот сумму 24 можем получить, вычеркнув 8 и 5. итак, искомое число 69720.
4,8(56 оценок)
Ответ:
lol2710
lol2710
11.04.2022
1) a+b+c=0 => a+b=-c => (a+b)³=(-c)³ => a³+3a²b+3ab²+b³=-c³ =>
=> a³+b³+c³=-(3a²b+3ab²) => a³+b³+c³=-3ab(a+b) => a³+b³+c³=-3ab(-c) =>
=> a³+b³+c³=3abc
2) Обратное утверждение:
Если a³+b³+c³=3abc, то a+b+c=0 (думаю, имеется в виду, что a+b+c обязательно будет равно 0, и не существует других вариантов).
Из утверждения следует, что c³-3abc+a³+b³=0. Допустим, известны числа a и b. Тогда c³-3abc+a³+b³=0 является кубическим уравнением относительно c. Как известно, любое кубическое уравнение с рациональными коэффициентами имеет ровно три корня (необязательно действительных). Отсюда следует, что при фиксированных a и b и при 3-х вариантах c получится три варианта для суммы a+b+c, одним из которых является a+b+c=0.
Таким образом, пункт 1 является верным. Пункт 2 не является верным.
Найдем другие два варианта для c.
Известно, что в уравнении c³-3abc+a³+b³=0 одним из решений является c=-(a+b), так как при подстановке в уравнение получится тождество. Разложим левую часть уравнения на скобки:
c³-3abc+a³+b³=(a+b+c)(c²-c(a+b)+a²-ab+b²).
Решим уравнение c²-c(a+b)+a²-ab+b²=0 относительно c:
D=(-(a+b))²-4(a²-ab+b²)=a²+2ab+b²-4a²+4ab-4b²=-3(a²-2ab+b²)=-3(a-b)²≤0
c1,2=((a+b)+-√3(a-b)*i)/2, где i²=-1, i - мнимая единица.
Если D=0, то a=b, а выражение для c примет такой вид: c=(a+b)/2=(a+a)/2=a. Получим, что в этом случае a=b=c, а сумма a+b+c=3a для любого a.
Если D<0, то c1=(a+b)/2+i√3(a-b)/2,
c2=(a+b)/2-i√3(a-b)/2.
А возможные варианты для суммы станут такими:
a+b+c=a+b+(a+b)/2+i√3(a-b)/2=3(a+b)/2+i√3(a-b)/2,
или
a+b+c=a+b+(a+b)/2-i√3(a-b)/2=3(a+b)/2-i√3(a-b)/2
4,4(93 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ